Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 13: 1048593, 2023.
Article in English | MEDLINE | ID: mdl-36798825

ABSTRACT

Patients surviving head and neck cancer (HNC) suffer from high physical, psychological, and socioeconomic burdens. Achieving cancer-free survival with an optimal quality of life (QoL) is the primary goal for HNC patient management. So, maintaining lifelong surveillance is critical. An ambitious goal would be to carry this out through the advanced analysis of environmental, emotional, and behavioral data unobtrusively collected from mobile devices. The aim of this clinical trial is to reduce, with non-invasive tools (i.e., patients' mobile devices), the proportion of HNC survivors (i.e., having completed their curative treatment from 3 months to 10 years) experiencing a clinically relevant reduction in QoL during follow-up. The Big Data for Quality of Life (BD4QoL) study is an international, multicenter, randomized (2:1), open-label trial. The primary endpoint is a clinically relevant global health-related EORTC QLQ-C30 QoL deterioration (decrease ≥10 points) at any point during 24 months post-treatment follow-up. The target sample size is 420 patients. Patients will be randomized to be followed up using the BD4QoL platform or per standard clinical practice. The BD4QoL platform includes a set of services to allow patients monitoring and empowerment through two main tools: a mobile application installed on participants' smartphones, that includes a chatbot for e-coaching, and the Point of Care dashboard, to let the investigators manage patients data. In both arms, participants will be asked to complete QoL questionnaires at study entry and once every 6 months, and will undergo post-treatment follow up as per clinical practice. Patients randomized to the intervention arm (n=280) will receive access to the BD4QoL platform, those in the control arm (n=140) will not. Eligibility criteria include completing curative treatments for non-metastatic HNC and the use of an Android-based smartphone. Patients undergoing active treatments or with synchronous cancers are excluded. Clinical Trial Registration: ClinicalTrials.gov, identifier (NCT05315570).

2.
Sensors (Basel) ; 22(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35161448

ABSTRACT

Behavior modeling has multiple applications in the intelligent environment domain. It has been used in different tasks, such as the stratification of different pathologies, prediction of the user actions and activities, or modeling the energy usage. Specifically, behavior prediction can be used to forecast the future evolution of the users and to identify those behaviors that deviate from the expected conduct. In this paper, we propose the use of embeddings to represent the user actions, and study and compare several behavior prediction approaches. We test multiple model (LSTM, CNNs, GCNs, and transformers) architectures to ascertain the best approach to using embeddings for behavior modeling and also evaluate multiple embedding retrofitting approaches. To do so, we use the Kasteren dataset for intelligent environments, which is one of the most widely used datasets in the areas of activity recognition and behavior modeling.


Subject(s)
Neural Networks, Computer , Humans
3.
Sensors (Basel) ; 21(14)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34300579

ABSTRACT

In this work we performed a comparison between two different approaches to track a person in indoor environments using a locating system based on BLE technology with a smartphone and a smartwatch as monitoring devices. To do so, we provide the system architecture we designed and describe how the different elements of the proposed system interact with each other. Moreover, we have evaluated the system's performance by computing the mean percentage error in the detection of the indoor position. Finally, we present a novel location prediction system based on neural embeddings, and a soft-attention mechanism, which is able to predict user's next location with 67% accuracy.


Subject(s)
Smartphone , Humans
4.
Sensors (Basel) ; 20(23)2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33255294

ABSTRACT

In the smart city context, Big Data analytics plays an important role in processing the data collected through IoT devices. The analysis of the information gathered by sensors favors the generation of specific services and systems that not only improve the quality of life of the citizens, but also optimize the city resources. However, the difficulties of implementing this entire process in real scenarios are manifold, including the huge amount and heterogeneity of the devices, their geographical distribution, and the complexity of the necessary IT infrastructures. For this reason, the main contribution of this paper is the PADL description language, which has been specifically tailored to assist in the definition and operationalization phases of the machine learning life cycle. It provides annotations that serve as an abstraction layer from the underlying infrastructure and technologies, hence facilitating the work of data scientists and engineers. Due to its proficiency in the operationalization of distributed pipelines over edge, fog, and cloud layers, it is particularly useful in the complex and heterogeneous environments of smart cities. For this purpose, PADL contains functionalities for the specification of monitoring, notifications, and actuation capabilities. In addition, we provide tools that facilitate its adoption in production environments. Finally, we showcase the usefulness of the language by showing the definition of PADL-compliant analytical pipelines over two uses cases in a smart city context (flood control and waste management), demonstrating that its adoption is simple and beneficial for the definition of information and process flows in such environments.

5.
J Biomed Inform ; 64: 108-115, 2016 12.
Article in English | MEDLINE | ID: mdl-27693564

ABSTRACT

The increase of life expectancy in modern society has caused an increase in elderly population. Elderly people want to live independently in their home environment for as long as possible. However, as we age, our physical skills tend to worsen and our social circle tends to become smaller, something that often leads to a considerable decrease of both our physical and social activities. In this paper, we present an AAL framework developed within the SONOPA project, whose objective is to promote active ageing by combining a social network with information inferred using in-home sensors.


Subject(s)
Aging , Social Support , Activities of Daily Living , Humans , Monitoring, Ambulatory , Telemedicine
6.
Sensors (Basel) ; 15(4): 8192-213, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25856329

ABSTRACT

Evaluating human activity recognition systems usually implies following expensive and time-consuming methodologies, where experiments with humans are run with the consequent ethical and legal issues. We propose a novel evaluation methodology to overcome the enumerated problems, which is based on surveys for users and a synthetic dataset generator tool. Surveys allow capturing how different users perform activities of daily living, while the synthetic dataset generator is used to create properly labelled activity datasets modelled with the information extracted from surveys. Important aspects, such as sensor noise, varying time lapses and user erratic behaviour, can also be simulated using the tool. The proposed methodology is shown to have very important advantages that allow researchers to carry out their work more efficiently. To evaluate the approach, a synthetic dataset generated following the proposed methodology is compared to a real dataset computing the similarity between sensor occurrence frequencies. It is concluded that the similarity between both datasets is more than significant.

7.
Sensors (Basel) ; 14(3): 5354-91, 2014 Mar 17.
Article in English | MEDLINE | ID: mdl-24643006

ABSTRACT

The participation of users within AAL environments is increasing thanks to the capabilities of the current wearable devices. Furthermore, the significance of considering user's preferences, context conditions and device's capabilities help smart environments to personalize services and resources for them. Being aware of different characteristics of the entities participating in these situations is vital for reaching the main goals of the corresponding systems efficiently. To collect different information from these entities, it is necessary to design several formal models which help designers to organize and give some meaning to the gathered data. In this paper, we analyze several literature solutions for modeling users, context and devices considering different approaches in the Ambient Assisted Living domain. Besides, we remark different ongoing standardization works in this area. We also discuss the used techniques, modeled characteristics and the advantages and drawbacks of each approach to finally draw several conclusions about the reviewed works.

8.
Sensors (Basel) ; 12(8): 10208-27, 2012.
Article in English | MEDLINE | ID: mdl-23112596

ABSTRACT

To be able to react adequately a smart environment must be aware of the context and its changes. Modeling the context allows applications to better understand it and to adapt to its changes. In order to do this an appropriate formal representation method is needed. Ontologies have proven themselves to be one of the best tools to do it. Semantic inference provides a powerful framework to reason over the context data. But there are some problems with this approach. The inference over semantic context information can be cumbersome when working with a large amount of data. This situation has become more common in modern smart environments where there are a lot sensors and devices available. In order to tackle this problem we have developed a mechanism to distribute the context reasoning problem into smaller parts in order to reduce the inference time. In this paper we describe a distributed peer-to-peer agent architecture of context consumers and context providers. We explain how this inference sharing process works, partitioning the context information according to the interests of the agents, location and a certainty factor. We also discuss the system architecture, analyzing the negotiation process between the agents. Finally we compare the distributed reasoning with the centralized one, analyzing in which situations is more suitable each approach.


Subject(s)
Artificial Intelligence , Computers , Environment Design , Models, Theoretical , Semantics , Algorithms , Equipment Design , Temperature
9.
Sensors (Basel) ; 12(4): 4934-51, 2012.
Article in English | MEDLINE | ID: mdl-22666068

ABSTRACT

Modeling and managing correctly the user context in Smart Environments is important to achieve robust and reliable systems. When modeling reality we must take into account its ambiguous nature. Considering the uncertainty and vagueness in context data information it is possible to attain a more precise picture of the environment, thus leading to a more accurate inference process. To achieve these goals we present an ontology that models the ambiguity in intelligent environments and a data fusion and inference process that takes advantage of that extra information to provide better results. Our system can assess the certainty of the captured measurements, discarding the unreliable ones and combining the rest into a unified vision of the current user context. It also models the vagueness of the system, combining it with the uncertainty to obtain a richer inference process.

SELECTION OF CITATIONS
SEARCH DETAIL
...