Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Front Microbiol ; 12: 718477, 2021.
Article in English | MEDLINE | ID: mdl-34504483

ABSTRACT

Among non-tuberculous mycobacteria, Mycobacterium kansasii is one of the most pathogenic, able to cause pulmonary disease indistinguishable from tuberculosis in immunocompetent susceptible adults. The lack of animal models that reproduce human-like lung disease, associated with the necrotic lung pathology, impairs studies of M. kansasii virulence and pathogenicity. In this study, we examined the ability of the C57BL/6 mice, intratracheally infected with highly virulent M. kansasii strains, to produce a chronic infection and necrotic lung pathology. As a first approach, we evaluated ten M. kansasii strains isolated from Brazilian patients with pulmonary disease and the reference strain M. kansasii ATCC 12478 for virulence-associated features in macrophages infected in vitro; five of these strains differing in virulence were selected for in vivo analysis. Highly virulent isolates induced progressive lung disease in mice, forming large encapsulated caseous granulomas in later stages (120-150 days post-infection), while the low-virulent strain was cleared from the lungs by day 40. Two strains demonstrated increased virulence, causing premature death in the infected animals. These data demonstrate that C57BL/6 mice are an excellent candidate to investigate the virulence of M. kansasii isolates. We observed considerable heterogeneity in the virulence profile of these strains, in which the presence of highly virulent strains allowed us to establish a clinically relevant animal model. Comparing public genomic data between Brazilian isolates and isolates from other geographic regions worldwide demonstrated that at least some of the highly pathogenic strains isolated in Brazil display remarkable genomic similarities with the ATCC strain 12478 isolated in the United States 70 years ago (less than 100 SNPs of difference), as well as with some recent European clinical isolates. These data suggest that few pathogenic clones have been widely spread within M. kansasii population around the world.

2.
J Infect Dis ; 223(3): 494-507, 2021 02 13.
Article in English | MEDLINE | ID: mdl-33206171

ABSTRACT

BACKGROUND: The role of myeloid-derived suppressor cells (MDSCs) in patients with severe tuberculosis who suffer from uncontrolled pulmonary inflammation caused by hypervirulent mycobacterial infection remains unclear. METHODS: This issue was addressed using C57BL/6 mice infected with highly virulent Mycobacterium bovis strain MP287/03. RESULTS: CD11b+GR1int population increased in the bone marrow, blood and lungs during advanced disease. Pulmonary CD11b+GR1int (Ly6GintLy6Cint) cells showed granularity similar to neutrophils and expressed immature myeloid cell markers. These immature neutrophils harbored intracellular bacilli and were preferentially located in the alveoli. T-cell suppression occurred concomitantly with CD11b+GR1int cell accumulation in the lungs. Furthermore, lung and bone marrow GR1+ cells suppressed both T-cell proliferation and interferon γ production in vitro. Anti-GR1 therapy given when MDSCs infiltrated the lungs prevented expansion and fusion of primary pulmonary lesions and the development of intragranulomatous caseous necrosis, along with increased mouse survival and partial recovery of T-cell function. Lung bacterial load was reduced by anti-GR1 treatment, but mycobacteria released from the depleted cells proliferated extracellularly in the alveoli, forming cords and clumps. CONCLUSIONS: Granulocytic MDSCs massively infiltrate the lungs during infection with hypervirulent mycobacteria, promoting bacterial growth and the development of inflammatory and necrotic lesions, and are promising targets for host-directed therapies.


Subject(s)
Granulocytes , Lung/metabolism , Mycobacterium bovis , Myeloid-Derived Suppressor Cells , Tuberculosis , Animals , Antigens, Ly , Bone Marrow , CD11b Antigen , Cell Proliferation , Disease Models, Animal , Granulocytes/immunology , Immunomodulation , Lung/pathology , Mice , Mice, Inbred C57BL , Mycobacterium bovis/pathogenicity , Myeloid Cells , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/pathology , Neutrophils , Tuberculosis/pathology
3.
J Infect Dis ; 219(6): 964-974, 2019 02 23.
Article in English | MEDLINE | ID: mdl-30307561

ABSTRACT

BACKGROUND: Tuberculous pneumonia, necrotic granulomatous lesions, and bacterial dissemination characterize severe forms of mycobacterial infection. METHODS: To evaluate the pulmonary CD4+ T-cell response during severe tuberculosis, C57BL/6 mice were infected with approximately 100 bacilli of 3 hypervirulent mycobacterial isolates (Mycobacterium tuberculosis strain Beijing 1471 and Mycobacterium bovis strains B2 and MP287/03) or the H37Rv M tuberculosis strain as reference for mycobacterial virulence. Because high expression of both CD39 and CD73 ectonucleotidases was detected on parenchymal CD4+ T cells, we investigated whether CD4+ T-cell suppression in the context of severe disease was due to the extracellular adenosine accumulation that resulted from tissue damage. RESULTS: Lowest expression of CD69, which is an activation marker implicated in maintaining cells in tissues, was observed in lungs from mice displaying the most severe pulmonary pathology. Reduced interferon (IFN)γ-producing CD4+ T cells were also found in the lung of these mice. Intranasal administration of the adenosine receptor antagonist caffeine substantially enhanced the frequency and number of parenchymal CD4+ T cells as well as both CD69 expression and IFNγ production. CONCLUSIONS: These results indicate that adenosine, which may be generated by extracellular adenosine triphosphate degradation, impairs the parenchymal CD4+ T-cell response and contributes to the development of severe tuberculosis.


Subject(s)
CD4-Positive T-Lymphocytes/pathology , Lung/pathology , Tuberculosis, Pulmonary/pathology , 5'-Nucleotidase/metabolism , Animals , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Caffeine/pharmacology , Interferon-gamma/metabolism , Lectins, C-Type/metabolism , Lung/microbiology , Mice, Inbred C57BL , Mycobacterium bovis/pathogenicity , Mycobacterium tuberculosis/pathogenicity , Purinergic P1 Receptor Antagonists/pharmacology , Receptors, Purinergic P1/metabolism , Signal Transduction , Tuberculosis, Pulmonary/microbiology
5.
PLoS One ; 12(3): e0173715, 2017.
Article in English | MEDLINE | ID: mdl-28306733

ABSTRACT

Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb) that in most cases induces irreversible necrosis of lung tissue as a result of excessive inflammatory reactions. The murine model of TB in resistant C57BL/6 mice infected with reference Mtb strains is widely used in TB studies; however, these mice do not show a necrotic pathology, which restricts their use in studies of irreversible tissue damage. Recently, we demonstrated that necrotic lung lesions could be induced in the C57BL/6 mice by highly virulent Mtb strains belonging to the modern Beijing sublineage. However, the pathogenic mechanisms leading to necrosis in this model were not elucidated. In this study, we investigated the dynamics of lung lesions in mice infected with highly virulent Beijing Mtb strain M299, compared with those infected with laboratory Mtb strain H37Rv. The data demonstrate that necrotic lung lesions in mice infected by the strain M299 were associated with enhanced recruitment of myeloid cells, especially neutrophils, and increased levels of proinflammatory cytokines, consistent with exacerbated inflammation. High levels of IFN-γ production contributed to the control of bacterial growth. Further progression to chronic disease was associated with a reduction in the levels of inflammatory mediators in the lungs, the accumulation of foamy macrophages and partial healing of the necrotic tissue by fibrosis. At a late stage of disease, degradation of foamy cells resulted in the liberation of accumulated lipids and persisting bacilli and further activation of inflammation, which promoted lung consolidation. Overall, our studies show that C57BL/6 mice infected with highly virulent Mtb strain may serve as a TB model reproducing an exacerbated inflammatory response in a resistant host to hypervirulent mycobacteria, leading to irreversible necrotic lung lesions.


Subject(s)
Mycobacterium tuberculosis/pathogenicity , Neutrophils/immunology , Tuberculosis, Pulmonary/microbiology , Animals , Cytokines/biosynthesis , Mice , Mice, Inbred C57BL , Mycobacterium tuberculosis/growth & development , Tuberculosis, Pulmonary/metabolism , Tuberculosis, Pulmonary/pathology , Virulence
6.
Rev. bras. farmacogn ; 24(6): 644-650, Nov-Dec/2014. tab, graf
Article in English | LILACS | ID: lil-741843

ABSTRACT

The extract of the fruits from Schinus terebinthifolius Raddi, Anacardiaceae, was obtained by exhaustive extraction with methanol. Its fractions and isolated compounds were collected by fractionation with RP-2 column chromatography. The crude extract, the flavonoid fraction and the isolated compound identified as apigenin (1), were investigated regarding its inhibitory action of nitric oxide production by LPS-stimulated macrophages, antioxidant activity by DPPH and the antimycobacterial activity against Mycobacterium bovis BCG. The samples exhibited a significant inhibitory effect on the nitric oxide production (e.g., 1, IC50 19.23 ± 1.64 µg/ml) and also showed antioxidant activity. In addition, S. terebinthifolius samples inhibited the mycobacterial growth ( e.g., 1, IC50 14.53 ± 1.25 µg/ml). The necessary concentration to produce 50% of the maximum response (IC50) of these activities did not elicit a significant cytotoxic effect when compared with the positive control (100% of lysis). The antioxidant and nitric oxide inhibition activity displayed by S. terebinthifolius corroborates its ethnopharmacological use of this specie as an anti-inflammatory. In addition, our results suggest that the flavonoids of S. terebinthifolius are responsible for the activities found. We, describe for the first time the activity against Mycobacterium bovis BCG and the inhibition of nitric oxide production for S. terebinthifolius.

7.
PLoS Pathog ; 10(7): e1004188, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24991816

ABSTRACT

The purinergic P2X7 receptor (P2X7R) is a sensor of extracellular ATP, a damage-associated molecule that is released from necrotic cells and that induces pro-inflammatory cytokine production and cell death. To investigate whether the innate immune response to damage signals could contribute to the development of pulmonary necrotic lesions in severe forms of tuberculosis, disease progression was examined in C57BL/6 and P2X7R-/- mice that were intratracheally infected with highly virulent mycobacterial strains (Mycobacterium tuberculosis strain 1471 of the Beijing genotype family and Mycobacterium bovis strain MP287/03). The low-dose infection of C57BL/6 mice with bacteria of these strains caused the rapid development of extensive granulomatous pneumonia with necrotic areas, intense bacillus dissemination and anticipated animal death. In contrast, in P2X7R-/- mice, the lung pathology presented with moderate infiltrates of mononuclear leukocytes without visible signs of necrosis; the disease attenuation was accompanied by a delay in mortality. In vitro, the hypervirulent mycobacteria grew rapidly inside macrophages and induced death by a P2X7R-dependent mechanism that facilitated the release of bacilli. Furthermore, these bacteria were resistant to the protective mechanisms elicited in macrophages following extracellular ATP stimulation. Based on this study, we propose that the rapid intracellular growth of hypervirulent mycobacteria results in massive macrophage damage. The ATP released by damaged cells engages P2X7R and accelerates the necrotic death of infected macrophages and the release of bacilli. This vicious cycle exacerbates pneumonia and lung necrosis by promoting widespread cell destruction and bacillus dissemination. These findings suggest the use of drugs that have been designed to inhibit the P2X7R as a new therapeutic approach to treat the aggressive forms of tuberculosis.


Subject(s)
Macrophages , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/pathogenicity , Receptors, Purinergic P2X7 , Tuberculosis, Pulmonary , Adenosine Triphosphate/immunology , Animals , Humans , Macrophages/immunology , Macrophages/microbiology , Macrophages/pathology , Mice , Mice, Knockout , Mycobacterium bovis/immunology , Mycobacterium bovis/pathogenicity , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/immunology , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/pathology
8.
J Clin Microbiol ; 52(7): 2615-24, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24829250

ABSTRACT

Strains of the Beijing genotype family of Mycobacterium tuberculosis are a cause of particular concern because of their increasing dissemination in the world and their association with drug resistance. Phylogenetically, this family includes distinct ancient and modern sublineages. The modern strains, contrary to the ancestral counterparts, demonstrated increasing prevalence in many world regions that suggest an enhanced bacterial pathogenicity. We therefore evaluated virulence of modern versus ancient Beijing strains with similar epidemiological and genotype characteristics. For this, we selected six strains that had very similar 24-locus mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing profiles and belonged to the region of difference 181 (RD181) subgroup but differed using markers (mutT2 and mutT4 genes and NTF locus) that discriminate between modern and ancient Beijing sublineages. The strains were isolated from native patients in Brazil and Mozambique, countries with a low prevalence of Beijing strains. The virulence levels of these strains were determined in models of pulmonary infection in mice and in vitro macrophage infection and compared with that of a strain from Russia, part of the epidemic and hypervirulent Beijing clone B0/W148, and of the laboratory strain H37Rv. The results showed that two of the three modern Beijing strains were highly pathogenic, exhibiting levels of virulence comparable with that of the epidemic Russian strain. In contrast, all isolates of the ancient sublineage displayed intermediate or low virulence. The data obtained demonstrate that the strains of the modern Beijing sublineage are more likely to exhibit highly virulent phenotypes than ancient strains and suggest that genetic alterations characteristic of the modern Beijing sublineage favor selection of highly virulent bacteria.


Subject(s)
Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/pathogenicity , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Multidrug-Resistant/pathology , Animals , Brazil , Cells, Cultured , Disease Models, Animal , Genotype , Humans , Macrophages/microbiology , Mice, Inbred C57BL , Molecular Typing , Mozambique , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/isolation & purification , Russia , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology
9.
BMC Microbiol ; 12: 166, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-22863292

ABSTRACT

BACKGROUND: Tuberculosis, caused by Mycobacterium tuberculosis or Mycobacterium bovis, remains one of the leading infectious diseases worldwide. The ability of mycobacteria to rapidly grow in host macrophages is a factor contributing to enhanced virulence of the bacteria and disease progression. Bactericidal functions of phagocytes are strictly dependent on activation status of these cells, regulated by the infecting agent and cytokines. Pathogenic mycobacteria can survive the hostile environment of the phagosome through interference with activation of bactericidal responses. To study the mechanisms employed by highly virulent mycobacteria to promote their intracellular survival, we investigated modulating effects of two pathogenic M. bovis isolates and a reference M. tuberculosis H37Rv strain, differing in their ability to multiply in macrophages, on activation phenotypes of the cells primed with major cytokines regulating proinflammatory macrophage activity. RESULTS: Bone marrow- derived macrophages obtained from C57BL/6 mice were infected by mycobacteria after a period of cell incubation with or without treatment with IFN-γ, inducing proinflammatory type-1 macrophages (M1), or IL-10, inducing anti-inflammatory type-2 cells (M2). Phenotypic profiling of M1 and M2 was then evaluated. The M. bovis strain MP287/03 was able to grow more efficiently in the untreated macrophages, compared with the strains B2 or H37Rv. This strain induced weaker secretion of proinflammatory cytokines, coinciding with higher expression of M2 cell markers, mannose receptor (MR) and arginase-1 (Arg-1). Treatment of macrophages with IFN-γ and infection by the strains B2 and H37Rv synergistically induced M1 polarization, leading to high levels of inducible nitric oxide synthase (iNOS) expression, and reduced expression of the Arg-1. In contrast, the cells infected with the strain MP287/03 expressed high levels of Arg-1 which competed with iNOS for the common substrate arginine, leading to lower levels of NO production. CONCLUSIONS: The data obtained demonstrated that the strain, characterized by increased growth in macrophages, down- modulated classical macrophage activation, through induction of an atypical mixed M1/M2 phenotype.


Subject(s)
Macrophage Activation , Macrophages/immunology , Macrophages/microbiology , Mycobacterium bovis/immunology , Mycobacterium bovis/pathogenicity , Animals , Cytokines/biosynthesis , Immune Evasion , Mice , Mice, Inbred C57BL , Microbial Viability , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/pathogenicity , Phagosomes/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...