Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Green Chem ; 19(19): 4651-4659, 2017 Oct 07.
Article in English | MEDLINE | ID: mdl-30271271

ABSTRACT

Fluoroquinolones (FQs) and Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are two classes of Active Pharmaceutical Ingredients (APIs), widespreadly used in human healthcare and as veterinary drugs, and that have been found throughout the water cycle in the past years. These two classes of APIs are commonly present in aqueous streams in concentrations ranging from ng.L-1 to µg.L-1. Despite such low concentrations, these contaminants tend to bioaccumulate, leading to serious environmental and health issues after chronic exposure. The low concentrations of FQs and NSAIDs in aqueous media also render their difficult identification and quantification, wich may result in an unefficient evaluation of their environmental impact and persistence. Therefore, the development of alternative pre-treatment techniques for their extraction and concentration from aqueous samples is a crucial requirement. In this work, liquid-liquid systems, namely ionic-liquid-based aqueous biphasic systems (IL-based ABS), were tested as simultaneous extraction and concentration platforms of FQs and NSAIDs. ABS composed of imidazolium-, ammonium- and phosphonium-based ILs and a citrate-based salt (C6H5K3O7) were evaluated for the single-step extraction and concentration of three FQs (ciprofloxacin, enrofloxacin and norfloxacin) and three NSAIDs (diclofenac, naproxen and ketoprofen) from aqueous samples. Outstanding one-step extraction efficiencies of APIs close to 100% were obtained. Furthermore, concentration factors of both FQs and NSAIDs were optimized by an appropriate manipulation of the phase-forming components compositions to tailor the volumes of the coexisting phases. Concentration factors of 1000-fold of both FQS and NSAIDs were obtained in a single-step, without reaching the saturation of the IL-rich phase. The concentration of APIs up to the mg.L-1 allowed their easy and straightforward identification and quantification by High-Performance Liquid Chromatography (HPLC) coupled to an UV detector, as shown either with model aqueous samples or real wastewater effluent samples.

2.
ACS Sustain Chem Eng ; 5(3): 2428-2436, 2017 Mar 06.
Article in English | MEDLINE | ID: mdl-30271684

ABSTRACT

In the current era of human life, we have been facing an increased consumption of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). Nevertheless, NSAIDs are not completely metabolized by humans and are further excreted into domestical effluents. Several studies have been showing that a wide variety of pharmaceuticals are present in water effluents and are thus a matter of serious concern in the public health. Although treatment plants use sophisticated technologies for pollutants/contaminants removal, none of these processes was particularly designed for NSAIDs. In this perspective, this work addresses the use of a liquid-liquid extraction approach, employing ionic liquids (ILs), for the removal of NSAIDs from aqueous media. In particular, aqueous biphasic systems (ABS) composed of ILs and aluminium-based salts, which are already used in water treatment plants, were tested for the removal of diclofenac, ibuprofen, naproxen and ketoprofen. With these systems, extraction efficiencies of NSAIDs up to 100% were obtained in a single-step. The recovery of NSAIDs from the IL medium and the recyclability of the IL-rich phase were then ascertained to guarantee the development of a more sustainable and cost-effective strategy. Based on the remarkable increase in the solubility of NSAIDs in the IL-rich phase (from a 300- to a 4100-fold when compared with pure water), water was then studied as an effective anti-solvent, and where single-step recovery percentages of NSAIDs from the IL-rich phase up to 91% were obtained. After the "cleaning" of the IL-rich phase by the induced precipitation of NSAIDs, the phase-forming components were recovered and reused in four consecutive cycles, with no detected losses on both the extraction efficiency and recovery of NSAIDs by induced precipitation. Finally, an integrated process is here proposed, which comprises the (i) removal of NSAIDs from aqueous media, (ii) the cleaning of the IL-rich phase by the recovery of NSAIDs by induced precipitation, and (iii) the phase-forming components recycling and reuse, aiming at unlocking new doors for alternative treatment strategies of aqueous environments.

3.
Fluid Phase Equilib ; 409: 458-465, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-27642224

ABSTRACT

Ionic liquids (ILs) with cyano-functionalized anions are a set of fluids that are still poorly characterized despite their remarkably low viscosities and potential applications. Aiming at providing a comprehensive study on the influence of the number of -CN groups through the surface tension and surface organization of ILs, the surface tensions of imidazolium-based ILs with cyano-functionalized anions were determined at atmospheric pressure and in the (298.15 to 343.15) K temperature range. The ILs investigated are based on 1-alkyl-3-methylimidazolium cations (alkyl = ethyl, butyl and hexyl) combined with the [SCN]-, [N(CN)2]-, [C(CN)3]- and [B(CN)4]-anions. Although the well-known trend regarding the surface tension decrease with the increase of the size of the aliphatic moiety at the cation was observed, the order obtained for the anions is more intricate. For a common cation and at a given temperature, the surface tension decreases according to: [N(CN)2]- > [SCN]- > [C(CN)3]- > [B(CN)4]-. Therefore, the surface tension of this homologous series does not decrease with the increase of the number of -CN groups at the anion as has been previously shown by studies performed with a more limited matrix of ILs. A maximum in the surface tension and critical temperature was observed for [N(CN)2]-based ILs. Furthermore, a minimum in the surface entropy, indicative of a highly structured surface, was found for the same class of ILs. All these evidences seem to be a result of stronger hydrogen-bonding interactions occurring in [N(CN)2]-based ILs, when compared with the remaining CN-based counterparts, and as sustained by cation-anion interaction energies derived from the Conductor Like Screening Model for Real Solvents (COSMO-RS).

4.
Green Chem ; 18(9): 2717-2725, 2016 May 07.
Article in English | MEDLINE | ID: mdl-27642262

ABSTRACT

In the past few years, the improvement of advanced analytical tools allowed to confirm the presence of trace amounts of metabolized and unchanged active pharmaceutical ingredients (APIs) in wastewater treatment plants (WWTPs) as well as in freshwater surfaces. It is known that the continuous contact with APIs, even at very low concentrations (ng L-1-µg L-1), leads to serious human health problems. In this context, this work shows the feasibility of using ionic-liquid-based aqueous biphasic systems (IL-based ABS) in the extraction of quinolones present in aqueous media. In particular, ABS composed of imidazolium- and phosphonium-based ILs and aluminium-based salts (already used in water treatment plants) were evaluated in one-step extractions of six fluoroquinolones (FQs), namely ciprofloxacin, enrofloxacin, moxifloxacin, norfloxacin, ofloxacin and sarafloxacin, and extraction efficiencies up to 98% were obtained. Despite the large interest devoted to IL-based ABS as extractive systems of outstanding performance, their recyclability/reusability has seldomly been studied. An efficient extraction/cleaning process of the IL-rich phase is here proposed by FQs induced precipitation. The recycling of the IL and its further reuse without losses in the ABS extractive performance for FQs were established, as confirmed by the four consecutive removal/extraction cycles evaluated. This novel recycling strategy supports IL-based ABS as sustainable and cost-efficient extraction platforms.

5.
Fluid Phase Equilib ; 423: 190-202, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27682333

ABSTRACT

This work explores the n vs. iso isomerization effects on the physicochemical properties of different families of ionic liquids (ILs) with variable aromaticity and ring size. This study comprises the experimental measurements, in a wide temperature range, of the ILs' thermal behavior, heat capacities, densities, refractive indices, surface tensions, and viscosities. The results here reported show that the presence of the iso-alkyl group leads to an increase of the temperature of the glass transition, Tg. The iso-pyrrolidinium (5 atoms ring cation core) and iso-piperidinium (6 atoms ring cation core) ILs present a strong differentiation in the enthalpy and entropy of melting. Non-aromatic ILs have higher molar heat capacities due to the increase of the atomic contribution, whereas it was not found any significant differentiation between the n and iso-alkyl isomers. A small increase of the surface tension was observed for the non-aromatic ILs, which could be related to their higher cohesive energy of the bulk, while the lower surface entropy observed for the iso isomers indicates a structural resemblance between the IL bulk and surface. The significant differentiation between ILs with a 5 and 6 atoms ring cation in the n-alkyl series (where 5 atoms ring cations have higher surface entropy) is an indication of a more efficient arrangement of the non-polar region at the surface in ILs with smaller cation cores. The ILs constituted by non-aromatic piperidinium cation, and iso-alkyl isomers were found to be the most viscous among the studied ILs due to their higher energy barriers for shear stress.

6.
J Phys Chem B ; 119(28): 8781-92, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26082427

ABSTRACT

This work presents and highlights the differentiation of the physicochemical properties of the [C1Him][NTf2], [C2Him][NTf2], [(1)C1(2)C1Him][NTf2], and [(1)C4(2)C1(3)C1im][NTf2] that is related with the strong bulk interaction potential, which highlights the differentiation on the physicochemical arising from the presence of the acidic group (N-H) as well as the methylation in position 2, C(2), of the imidazolium ring. Densities, viscosities, refractive indices, and surface tensions in a wide range of temperatures, as well as isobaric heat capacities at 298.15 K, for this IL series are presented and discussed. It was found that the volumetric properties are barely affected by the geometric and structural isomerization, following a quite regular trend. A linear correlation between the glass transition temperature, Tg, and the alkyl chain size was found; however, ILs with the acidic N-H group present a significant higher Tg than the [(1)CN-1(3)C1im][NTf2] and [(1)CN(3)CNim][NTf2] series. It was found that the most viscous ILs, ([(1)C1Him][NTf2], [(1)C2Him][NTf2], and [(1)C1(2)C1Him][NTf2]) have an acidic N-H group in the imidazolium ring in agreement with the observed increase of energy barrier of flow. The methylation in position 2, C(2), as well as the N-H acidic group in the imidazolium ring contribute to a significant variation in the cation-anion interactions and their dynamics, which is reflected in their charge distribution and polarizability leading to a significant differentiation of the refractive indices, surface tension, and heat capacities. The observed differentiation of the physicochemical properties of the [(1)C1Him][NTf2], [(1)C2Him][NTf2], [(1)C1(2)C1Him][NTf2], and [(1)C4(2)C1(3)C1im][NTf2] are an indication of the stronger bulk interaction potential, which highlights the effect that arises from the presence of the acidic group (N-H) as well as the methylation in position 2 of the imidazolium ring.

7.
Langmuir ; 30(22): 6408-18, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24834955

ABSTRACT

Aiming at providing a comprehensive study of the influence of the cation symmetry and alkyl side chain length on the surface tension and surface organization of ionic liquids (ILs), this work addresses the experimental measurements of the surface tension of two extended series of ILs, namely R,R'-dialkylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C(n)C(n)im][NTf2]) and R-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C(n)C(1)im][NTf2]), and their dependence with temperature (from 298 to 343 K). For both series of ILs the surface tension decreases with an increase in the cation side alkyl chain length up to aliphatic chains no longer than hexyl, here labeled as critical alkyl chain length (CACL). For ILs with aliphatic moieties longer than CACL the surface tension displays an almost constant value up to [C12C12im][NTf2] or [C16C1im][NTf2]. These constant values further converge to the surface tension of long chain n-alkanes, indicating that, for sufficiently long alkyl side chains, the surface ordering is strongly dominated by the aliphatic tails present in the IL. The enthalpies and entropies of surface were also derived and the critical temperatures were estimated from the experimental data. The trend of the derived thermodynamic properties highlights the effect of the structural organization of the IL at the surface with visible trend shifts occurring at a well-defined CACL in both symmetric and asymmetric series of ILs. Finally, the structure of a long-alkyl side chain IL at the vacuum-liquid interface was also explored using Molecular Dynamics simulations. In general, it was found that for the symmetric series of ILs, at the outermost polar layers, more cations point one of their aliphatic tails outward and the other inward, relative to the surface, than cations pointing both tails outward. The number of the former, while being the preferred conformation, exceeds the latter by around 75%.

SELECTION OF CITATIONS
SEARCH DETAIL