Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Electron. j. biotechnol ; 19(6): 21-25, Nov. 2016. ilus
Article in English | LILACS | ID: biblio-840308

ABSTRACT

Background: Xylitol is a five carbons polyol with promising medical applications. It can be obtained from chemical D-xylose reduction or by microbial fermentation of Sugarcane Bagasse Hemicellulosic Hydrolysate. For this last process, some microbial inhibitors, as furfural, constitute severe bottleneck. In this case, the use of strains able to produce xylitol simultaneously to furfural neutralization is an interesting alternative. A wild-type strain of Geotrichum sp. was detected with this ability, and its performance in xylitol production and furfural consumption was evaluated. Furthermore, were analyzed its degradation products. Results: Geotrichum sp. produced xylitol from D-xylose fermentation with a yield of 0.44 g-g-1. Furfural was fully consumed in fermentation assay and when provided in the medium until concentration of 6 g-L-1. The furfural degradation product is not an identified molecule, presenting a molecular weight of 161 g-mol-1, an uncommon feature for the microbial metabolism of this product. Conclusion: This strain presents most remarkable potential in performing furfural consumption simultaneous to xylitol production. Subsequent efforts must be employed to establish bioprocess to simultaneous detoxification and xylitol production by Geotrichum sp.


Subject(s)
Furaldehyde/metabolism , Geotrichum/metabolism , Polysaccharides/metabolism , Xylitol/biosynthesis , Xylose/metabolism , Fermentation
2.
Nat Prod Res ; 26(21): 2013-9, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22117164

ABSTRACT

From an endophytic strain of Gliocladium sp. isolated from the Amazonian plant Strychnos cf. toxifera, we obtained the diketopiperazine alkaloid cyclo-(glycyl-L-tyrosyl)-4,4-dimethylallyl ether (1), the steroids ergosterol (2), ergosterol peroxide (3), cerevisterol (4) and the citric acid (5). The AcOEt extract of the fermented broth by Gliocladium sp. showed potent activity against the cancer cell lines MDA-MB435 (human breast cancer cells), HCT-8 (human colorectal cancer cells) and SF-295 (human glioblastoma cancer cells). Compound 1 exhibited a strong antimicrobial activity against Micrococcus luteus at a concentration of 43.4 µM.


Subject(s)
Alkaloids/chemistry , Alkaloids/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Diketopiperazines/chemistry , Gliocladium/chemistry , Strychnos/microbiology , Alkaloids/isolation & purification , Antineoplastic Agents/pharmacology , Cell Line, Tumor/drug effects , Citric Acid/isolation & purification , Diketopiperazines/isolation & purification , Dose-Response Relationship, Drug , Endophytes/chemistry , Ergosterol/analogs & derivatives , Ergosterol/isolation & purification , Gliocladium/isolation & purification , Humans , Microbial Sensitivity Tests , Micrococcus luteus/drug effects , Molecular Structure , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Phytosterols/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL