Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 1): 23-30, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29372904

ABSTRACT

Human syncytial respiratory virus is a nonsegmented negative-strand RNA virus with serious implications for respiratory disease in infants, and has recently been reclassified into a new family, Pneumoviridae. One of the main reasons for this classification is the unique presence of a transcriptional antiterminator, called M2-1. The puzzling mechanism of action of M2-1, which is a rarity among antiterminators in viruses and is part of the RNA polymerase complex, relies on dissecting the structure and function of this multidomain tetramer. The RNA-binding activity is located in a monomeric globular `core' domain, a high-resolution crystal structure of which is now presented. The structure reveals a compact domain which is superimposable on the full-length M2-1 tetramer, with additional electron density for the C-terminal tail that was not observed in the previous models. Moreover, its folding stability was determined through chemical denaturation, which shows that the secondary and tertiary structure unfold concomitantly, which is indicative of a two-state equilibrium. These results constitute a further step in the understanding of this unique RNA-binding domain, for which there is no sequence or structural counterpart outside this virus family, in addition to its implications in transcription regulation and its likeliness as an antiviral target.


Subject(s)
DNA-Directed RNA Polymerases/chemistry , RNA-Binding Proteins/chemistry , Respiratory Syncytial Virus, Human/chemistry , Viral Proteins/chemistry , Crystallography, X-Ray , Humans , Models, Molecular , Protein Folding , Protein Interaction Domains and Motifs , Protein Stability , Protein Structure, Quaternary , Scattering, Small Angle , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL