Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38337996

ABSTRACT

The journal retracts the article, 'Antimicrobial and Wound Healing Potential of a New Chemotype from Piper cubeba L. Essential Oil and In Silico Study on S. aureus tyrosyl-tRNA Synthetase Protein' [...].

2.
Molecules ; 29(2)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38257218

ABSTRACT

Isoxazolidine derivatives were designed, synthesized, and characterized using different spectroscopic techniques and elemental analysis and then evaluated for their ability to inhibit both α-amylase and α-glucosidase enzymes to treat diabetes. All synthesized derivatives demonstrated a varying range of activity, with IC50 values ranging from 53.03 ± 0.106 to 232.8 ± 0.517 µM (α-amylase) and from 94.33 ± 0.282 to 258.7 ± 0.521 µM (α-glucosidase), revealing their high potency compared to the reference drug, acarbose (IC50 = 296.6 ± 0.825 µM and 780.4 ± 0.346 µM), respectively. Specifically, in vitro results revealed that compound 5d achieved the most inhibitory activity with IC50 values of 5.59-fold and 8.27-fold, respectively, toward both enzymes, followed by 5b. Kinetic studies revealed that compound 5d inhibits both enzymes in a competitive mode. Based on the structure-activity relationship (SAR) study, it was concluded that various substitution patterns of the substituent(s) influenced the inhibitory activities of both enzymes. The server pkCSM was used to predict the pharmacokinetics and drug-likeness properties for 5d, which afforded good oral bioavailability. Additionally, compound 5d was subjected to molecular docking to gain insights into its binding mode interactions with the target enzymes. Moreover, via molecular dynamics (MD) simulation analysis, it maintained stability throughout 100 ns. This suggests that 5d possesses the potential to simultaneously target both enzymes effectively, making it advantageous for the development of antidiabetic medications.


Subject(s)
alpha-Amylases , alpha-Glucosidases , Kinetics , Molecular Docking Simulation , Biological Availability
3.
Gels ; 9(11)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37998972

ABSTRACT

In our previous work, three different weight ratios of chitosan/PVA (1:3, 1:1, and 3:1) were blended and then cross-linked with trimellitic anhydride isothiocyanate (TAI) at a concentration depending on their chitosan content, obtaining three hydrogels symbolized by H13, H11, and H31. Pure chitosan was cross-linked with TAI, producing a hydrogel symbolized by H10. Further, three H31-based silver nanoparticles composites (H31/AgNPs1%, H31/AgNPs3%, and H31/AgNPs5%) were also synthesized. They were investigated, for the first time in this study, as adsorbents for Congo Red (CR) and Crystal Violet (CV) dyes. The removal efficiency of CR dye increased with increasing H10 content in the hydrogels, and with increasing AgNP content in the composites, reaching 99.91% for H31/AgNPs5%. For CV dye, the removal efficiency increased with the increase in the PVA content. Furthermore, the removal efficiency of CV dye increased with an increasing AgNP content, reaching 94.7% for H31/AgNPs5%. The adsorption capacity increased with the increase in both the initial dye concentration and temperature, while with an increasing pH it increased in the case of CV dye and decreased in the case of CR dye. The adsorption of CV dye demonstrated that the Freundlich isotherm model is better suited for the experimental results. Moreover, the results were best fitted with pseudo-second-order kinetic model.

4.
Int J Mol Sci ; 24(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37762321

ABSTRACT

This paper explores the photochemical synthesis of noble metal nanoparticles, specifically gold (Au) and silver (Ag) nanoparticles, using a one-component photoinitiator system. The synthesis process involves visible light irradiation at a wavelength of 419 nm and an intensity of 250 mW/cm2. The radical-generating capabilities of the photoinitiators were evaluated using electron spin resonance (ESR) spectroscopy. The main objective of this study was to investigate how the concentration of metal salts influences the size and distribution of the nanoparticles. Proposed mechanisms for the photochemical formation of nanoparticles through photoinitiated radicals were validated using cyclic voltammetry. The results showed that the concentration of AgNO3 significantly impacted the size of silver nanoparticles, with diameters ranging from 1 to 5 nm at 1 wt% and 3 wt% concentrations, while increasing the concentration to 5 wt% led to an increase in the diameter of silver nanoparticles to 16 nm. When HAuCl4 was used instead of AgNO3, it was found that the average diameters of gold nanoparticles synthesized using both photoinitiators at different concentrations ranged between 1 and 4 nm. The findings suggest that variations in HAuCl4 concentration have minimal impact on the size of gold nanoparticles. The photoproduction of AuNPs was shown to be thermodynamically favorable, with the reduction of HAuCl4 to Au0 having ∆G values of approximately -3.51 and -2.96 eV for photoinitiators A and B, respectively. Furthermore, the photoreduction of Ag+1 to Ag0 was demonstrated to be thermodynamically feasible, with ∆G values of approximately -3.459 and -2.91 eV for photoinitiators A and B, respectively, confirming the effectiveness of the new photoinitiators on the production of nanoparticles. The synthesis of nanoparticles was monitored using UV-vis absorption spectroscopy, and their sizes were determined through particle size analysis of transmission electron microscopy (TEM) images.


Subject(s)
Metal Nanoparticles , Metal Nanoparticles/chemistry , Gold/chemistry , Silver/chemistry , Photochemical Processes , Sodium Chloride , Sodium Chloride, Dietary , Particle Size
5.
Polymers (Basel) ; 15(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37631435

ABSTRACT

In this study, we developed highly efficient nonwoven membranes by modifying the surface of polypropylene (PP) and poly(butylene terephthalate) (PBT) through photo-grafting polymerization. The nonwoven membrane surfaces of PP and PBT were grafted with poly(ethylene glycol) diacrylate (PEGDA) in the presence of benzophenone (BP) and metal salt. We immobilized tertiary amine groups as BP synergists on commercial nonwoven membranes to improve PP and PBT surfaces. In situ Ag, Au, and Au/Ag nanoparticle formation enhances the nonwoven membrane surface. SEM, FTIR, and EDX were used to analyze the surface. We evaluated modified nonwoven membranes for photocatalytic activity by degrading methylene blue (MB) under LED and sunlight. Additionally, we also tested modified membranes for antibacterial activity against E. coli. The results indicated that the modified membranes exhibited superior efficiency in removing MB from water. The PBT showed the highest efficiency in dye removal, and bimetallic nanoparticles were more effective than monometallic. Modified membranes exposed to sunlight had higher efficiency than those exposed to LED light, with the PBT/Au/Ag membrane showing the highest dye removal at 97% within 90 min. The modified membranes showed reuse potential, with dye removal efficiency decreasing from 97% in the first cycle to 85% in the fifth cycle.

6.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37513936

ABSTRACT

A series of novel enantiopure isoxazolidine derivatives were synthesized and evaluated for their anticancer activities against three human cancer cell lines such as human breast carcinoma (MCF-7), human lung adenocarcinoma (A-549), and human ovarian carcinoma (SKOV3) by employing MTT assay. The synthesized compounds were characterized by NMR and elemental analysis. Results revealed that all the synthesized compounds displayed significant inhibition towards the tested cell lines. Among them, 2g and 2f, which differ only by the presence of an ester group at the C-3 position and small EDG (methyl) at the C-5 position of the phenyl ring (2g), were the most active derivatives in attenuating the growth of the three cells in a dose-dependent manner. The IC50 for 2g were 17.7 ± 1 µM (MCF-7), 12.1 ± 1.1 µM (A-549), and 13.9 ± 0.7 µM (SKOV3), and for 2f were 9.7 ± 1.3µM (MCF-7), 9.7 ± 0.7µM (A-549), and 6.5 ± 0.9µM (SKOV3), respectively, which were comparable to the standard drug, doxorubicin. The enzymatic inhibition of 2f and 2g against EGFR afforded good inhibitory activity with IC50 of 0.298 ± 0.007 µM and 0.484 ± 0.01 µM, respectively, close to the positive control, Afatinib. Compound 2f arrested the cell cycle in the S phase in MCF-7 and SKOV3 cells, and in the G2/M phase in the A549 cell; however, 2g induced G0/G1 phase cell cycle arrest, and inhibited the progression of the three cancer cells, together with significant apoptotic effects. The docking study of compounds 2f and 2g into EGFR ATP-active site revealed that it fits nicely with good binding affinity. The pharmacokinetic and drug-likeness scores revealed notable lead-like properties. At 100 ns, the dynamic simulation investigation revealed high conformational stability in the EGFR binding cavity.

7.
Plants (Basel) ; 12(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37050119

ABSTRACT

Insecticides are important to increase crop yields, but their overuse has damaged the environment and endangered human health. In this study, residues of spiromesifen and spirodiclofen were determined in tomato fruit using a simple and efficient analytical procedure based on acetonitrile extraction, extract dilution, and UPLC-MS/MS. The linearity range was 1-100 µg/kg and 0.5-100 µg/kg, and the correlation coefficient (R2) and residuals were ≥0.9991 and ≤16.4%, respectively. The limit of determination (LOD) was 0.26 and 0.08 µg/kg, while the limit of quantification (LOQ) was verified at 5 µg/kg. The relative standard deviation of spiked replicates at 5 µg/kg analyzed in one day (RSDr, n = 6) was ≤8.35%, and within three different days (RSDR, n = 18) it was ≤15.85%, with recoveries exceeding 91.34%. The method recovery test showed a satisfactory value of 89.23-97.22% with an RSD of less than 12.88%. The matrix effect was determined after a 4-fold dilution of the raw extract and was -9.8% and -7.2%, respectively. The validated method was used to study the dissipation behavior of the tested analytes in tomato fruit under field conditions. First-order kinetics best described the dissipation rates. The calculated half-lives were 1.49-1.83 and 1.91-2.38 days for spiromesifen and spirodiclofen, respectively, after application of the authorized and doubled authorized doses, indicating that spiromesifen dissipated more rapidly than spirodiclofen. The final residue concentrations of spiromesifen and spirodiclofen were 0.307-0.751 mg/kg and 0.101-0.398 mg/kg, respectively, after two or three applications, and were below the European Union (EU) maximum residue limits. The chronic risk assessment indicates that both insecticides are safe for adult consumers.

8.
Polymers (Basel) ; 15(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36987309

ABSTRACT

A new hydrogel, based on chitosan crosslinked with 2-chlorophenyl-bis(6-amino-1,3-dimethyluracil-5-yl) methane, (2Clph-BU-Cs), has been successfully created. Various instrumental techniques such as elemental analysis, FTIR, SEM, and XRD were used to prove its structure. Its removal efficiency for anionic Congo red (CR) dye under different conditions for industrial wastewater treatment was studied. For optimizing the conditions to maximize CR dye removal, the impacts of temperature, contact time, pH, and initial concentration of the dye on adsorption capacity were investigated. The removal of the dye was pH-dependent, with a much higher value achieved at pH 4 than at pH 7 and 9. The maximum adsorption capacity of the hydrogel was 93.46 mg g-1. The model of adsorption process was fitted to the pseudo-second-order kinetic model. The intraparticle diffusion demonstrated the multi-step nature of the adsorption process. The thermodynamic results showed that the adsorption process was endothermic because of the positive value of enthalpy (43.70 kJ mol-1). The process of adsorption at high temperatures was spontaneous, according to the values of ∆G0. An increase in randomness was seen in the value of ∆S°. Generally, the investigated hydrogel has the potential to be used as a promising effective reusable adsorbent for industrial wastewater remediation.

9.
Polymers (Basel) ; 15(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36904530

ABSTRACT

The copper II complex's novel benzimidazole Schiff base ligands were manufactured and gauged as a new photoredox catalyst/photoinitiator amalgamated with triethylamine (TEA) and iodonium salt (Iod) for the polymerization of ethylene glycol diacrylate while exposed to visible light by an LED Lamp at 405 nm with an intensity of 543 mW/cm2 at 28 °C. Gold and silver nanoparticles were obtained through the reactivity of the copper II complexes with amine/Iod salt. The size of NPs was around 1-30 nm. Lastly, the high performance of copper II complexes for photopolymerization containing nanoparticles is presented and examined. Ultimately, the photochemical mechanisms were observed using cyclic voltammetry. The preparation of the polymer nanocomposite nanoparticles in situ was photogenerated during the irradiation LED at 405 nm with an intensity of 543 mW/cm2 at 28 °C process. UV-Vis, FTIR, and TEM analyses were utilized for the determination of the generation of AuNPs and AgNPs which resided within the polymer matrix.

10.
Biosensors (Basel) ; 13(3)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36979571

ABSTRACT

Throughout this research, a unique optical sensor for detecting one of the most dangerous heavy metal ions, Cu(II), was designed and developed. The (4-mercaptophenyl) iminomethylphenyl naphthalenyl carbamate (MNC) sensor probe was effectively prepared. The Schiff base of the sensor shows a "turn-off" state with excellent sensitivity to Cu(II) ions. This innovative fluorescent chemosensor possesses distinctive optical features with a substantial Stocks shift (about 114 nm). In addition, MNC has remarkable selectivity for Cu(II) relative to other cations. Density functional theory (DFT) and the time-dependent DFT (TDDFT) theoretical calculations were performed to examine Cu(II) chelation structures and associated electronic properties in solution, and the results indicate that the luminescence quenching in this complex is due to ICT. Chelation-quenched fluorescence is responsible for the internal charge transfer (ICT)-based selectivity of the MNC sensing molecule for Cu(II) ions. In a 1:9 (v/v) DMSO-HEPES buffer (20 mM, pH = 7.4) solution, Fluorescence and UV-Vis absorption of the MNC probe and Cu(II) ions were investigated. By utilizing a solution containing several metal ions, the interference of other metal ions was studied. This MNC molecule has outstanding selectivity and sensitivity, as well as a low LOD (1.45 nM). Consequently, these distinctive properties enable it to find the copper metal ions across an actual narrow dynamic range (0-1.2 M Cu(II)). The reversibility of the sensor was obtained by employing an EDTA as a powerful chelating agent.


Subject(s)
Fluorescent Dyes , Schiff Bases , Spectrometry, Fluorescence , Schiff Bases/chemistry , Fluorescent Dyes/chemistry , Copper/chemistry , Metals , Ions
11.
J Biomol Struct Dyn ; 41(20): 10969-10984, 2023 12.
Article in English | MEDLINE | ID: mdl-36961125

ABSTRACT

2-((E)-((4-(((E)-4-Nitrobenzylidene)amino)phenyl)imino)methyl)naphthalen-1-ol, was synthesised followed by metalation with Fe(III), Co(III), Cu(II), Zn(II) and Ni(II) metals. The compounds were characterised by different methods CHN, AAS, IR, NMR, XRD, TGA and UV-Vis. The results reveal that the ligand has bidentate behavior, and it is bound with metals by a coordination bond through both the nitrogen atom of the azomethine group and the oxygen atom, this provided an octahedral geometry. The X-ray diffraction of the compounds indicate that the ligands and complexes of Co(III), Fe(III) and Zn(II) have a crystalline nature, whereas the Ni(II) and Cu(II) have an amorphous structure. The agar diffusion method (hole plate) was used to evaluate the ligand's and its complexes' antibacterial and antifungal effects on Salmonella enterica serovar typhi and Candida albicans, respectively. It was observed that the Fe(III) complex had the best activity among the compounds against microbial strains. Cytotoxicity of new metal complexes was also assessed against A549, HepG-2 and PC-3 cancer cells. Results demonstrated that the Cu(II) complex displayed the preeminent activity among the synthesised compounds against all the tested cell lines. Furthermore, molecular docking simulation revealed that the Fe(III) complex is shown to have a high affinity with the active sites of two targets of microbial strains. Also, the Cu(II) complex shown to has a high affinity with the active sites of three targets of A-549, HepG-2 and PC-3 cancer cells, which was confirmed by the formation of the different modes of interaction.Communicated by Ramaswamy H. Sarma.


Subject(s)
Coordination Complexes , Coordination Complexes/chemistry , Molecular Docking Simulation , Ferric Compounds , Schiff Bases/chemistry , Ligands , Metals/chemistry , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests
12.
Antioxidants (Basel) ; 12(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36830010

ABSTRACT

Coriandrum sativum is one of the most widespread curative plants in the world, being vastly cultivated in arid and semi-arid regions as one of the oldest spice plants. The present study explored the extraction of polysaccharides from Coriandrum sativum seeds and the evaluation of their antioxidant potential and hepatoprotective effects in vivo. The polysaccharide from coriander seeds was extracted, and the structural characterization was performed by FT-IR, UV-vis, DSC, NMR (1D and 2D), GC-MS, and SEC analysis. The polysaccharide extracted from Coriandrum sativum (CPS) seeds was characterized to evaluate its antioxidant and hepatoprotective capacities in rats. Results showed that CPS was composed of arabinose, rhamnose, xylose, mannose, fructose, galactose, and glucose in molar percentages of 6.2%, 3.6%, 8.8%, 17.7%, 5.2%, 32.9%, and 25.6%, respectively. Further, CPS significantly hindered cadmium-induced oxidation damage and exercised a protective effect against Cd hepatocytotoxicity, with a considerable reduction in MDA production and interesting CAT and SOD enzyme levels. Results suggest that CPS might be employed as a natural antioxidant source.

13.
Pharmaceutics ; 15(2)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36839780

ABSTRACT

A novel series of benzimidazole ureas 3a-h were elaborated using 2-(1H-benzoimidazol-2-yl) aniline 1 and the appropriate isocyanates 2a-h. The antioxidant and possible antidiabetic activities of the target benzimidazole-ureas 3a-h were evaluated. Almost all compounds 3a-h displayed strong to moderate antioxidant activities. When tested using the three antioxidant techniques, TAC, FRAP, and MCA, compounds 3b and 3c exhibited marked activity. The most active antioxidant compound in this family was compound 3g, which had excellent activity using four different methods: TAC, FRAP, DPPH-SA, and MCA. In vitro antidiabetic assays against α-amylase and α-glucosidase enzymes revealed that the majority of the compounds tested had good to moderate activity. The most favorable results were obtained with compounds 3c, 3e, and 3g, and analysis revealed that compounds 3c (IC50 = 18.65 ± 0.23 µM), 3e (IC50 = 20.7 ± 0.06 µM), and 3g (IC50 = 22.33 ± 0.12 µM) had good α-amylase inhibitory potential comparable to standard acarbose (IC50 = 14.21 ± 0.06 µM). Furthermore, the inhibitory effect of 3c (IC50 = 17.47 ± 0.03 µM), 3e (IC50 = 21.97 ± 0.19 µM), and 3g (IC50 = 23.01 ± 0.12 µM) on α-glucosidase was also comparable to acarbose (IC50 = 15.41 ± 0.32 µM). According to in silico molecular docking studies, compounds 3a-h had considerable affinity for the active sites of human lysosomal acid α-glucosidase (HLAG) and pancreatic α-amylase (HPA), indicating that the majority of the examined compounds had potential anti-hyperglycemic action.

14.
Polymers (Basel) ; 15(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36850260

ABSTRACT

A new series of hydrogels was successfully prepared by incorporating various substituted bisuracil (R-BU) linkages between chitosan Schiff's base chains (R-BU-CsSB) and between chitosan chains (R-BU-Cs). After protection of the amino groups of chitosan by benzaldehyde, yielding chitosan Schiff's base (CsSB), the reaction with epichlorohydrin was confined on the -OH on C6 to produce epoxy chitosan Schiff's base (ECsSB), which was reacted with R-BU to form R-BU-CsSB hydrogels, and finally, the bioactive amino groups of chitosan were restored to obtain R-BU-Cs hydrogels. Further, some R-BU-Cs-based ZnO nanoparticle (R-BU-Cs/ZnONPs) composites were also prepared. Appropriate techniques such as elemental analysis, FTIR, XRD, SEM, and EDX were used to verify their structures. Their inhibition potency against all the tested microbes were arranged as: ZnONPs bio-composites > R-BU-Cs hydrogels > R-BU-CsSB hydrogels > Cs. Their inhibition performance against Gram-positive bacteria was better than Gram-negative ones. Their minimum inhibitory concentration (MIC) values decreased as a function of the negative resonance effect of the substituents in the aryl ring of R-BU linkages in the hydrogels. Compared with Vancomycin, the ZnONPs bio-composites showed superior inhibitory effects against most of the tested Gram-negative bacteria, all inspected Gram-positive ones, and all investigated fungi.

15.
ACS Omega ; 8(3): 3207-3220, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36713746

ABSTRACT

Benzophenone derivatives were evaluated as new photoinitiators in combination with triethylamine (TEA) and iodonium salt (Iod) for very rapid and efficient formation of metal nanoparticles in an organic solvent, by which silver and gold ions were reduced under light at 419 nm (photoreactor) with an irradiation intensity of 250 microwatts/cm2. The new benzophenone derivatives combined with TEA/Iod salt showed good production of metal nanoparticles (Au0 and Ag0) and a small size of nanoparticles of around 4-13 nm. The photochemical mechanisms for the production of initiating radicals were studied using cyclic voltammetry, where a negative ΔG of around -1.96 eV was obtained, which made the process favorable. The obtained results proved the formation of amine and phenyl radicals, which led to the reduction of gold III chloride or silver ions to the gold and silver NPs. The UV-vis spectroscopy technique was used as a very beneficial tool for the surface plasmon resonance band detection of metal nanoparticles. To sum up the results, we have observed that nanoparticles (NPs) were distributed differently in different photoinitiator systems and the particle size also changed by changing the system of initiation. In comparison to the system alone, not only were the nanoparticles smaller but they were also generated within a shorter period of irradiation time for the system BP\Iod\TEA. Finally, the quenching process of benzophenone fluorescence by the gold and silver nanoparticles was investigated.

16.
Materials (Basel) ; 15(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36500069

ABSTRACT

The removal of dyes from textile effluents utilizing advanced wastewater treatment methods with high efficiency and low cost has received substantial attention due to the rise in pollutants in water. The purpose of this work is to give a comprehensive analysis of the different treatments for removing chemical dyes from textile effluents. The capability and potential of conventional treatments for the degradation of dyeing compounds in aqueous media, as well as the influence of multiple parameters, such as the pH solution, initial dye concentration, and adsorbent dose, are presented in this study. This study is an overview of the scientific research literature on this topic, including nanoreductive and nanophotocatalyst processes, as well as nanoadsorbents and nanomembranes. For the purpose of treating sewage, the special properties of nanoparticles are currently being carefully researched. The ability of nanomaterials to remove organic matter, fungus, and viruses from wastewater is another benefit. Nanomaterials are employed in advanced oxidation techniques to clean wastewater. Additionally, because of their small dimensions, nanoparticles have a wide effective area of contact. Due to this, nanoparticles' adsorption and reactivity are powerful. The improvement of nanomaterial technology will be beneficial for the treatment of wastewater. This report also offers a thorough review of the distinctive properties of nanomaterials used in wastewater treatment, as well as their appropriate application and future possibilities. Since only a few types of nanomaterials have been produced, it is also important to focus on their technological feasibility in addition to their economic feasibility. According to this study, nanoparticles (NPs) have a significant adsorption area, efficient chemical reactions, and electrical conductivity that help treat wastewater effectively.

17.
Materials (Basel) ; 15(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36500171

ABSTRACT

Composite coatings of polyvinylidene fluoride (PVDF)/CeO2 were developed by using the spray approach to explore the wetting and corrosion behaviour of coated materials for applications related to industry. PVDF was combined with different quantities of CeO2 nanoparticles followed by spraying onto glass, aluminium, and steel substrates. The sessile droplet method and microscopy studies were used to assess the wetting behaviour and morphology of the coated surfaces, respectively. The corrosion resistance of uncoated substrates coated with PVDF only was compared with those coated with PVDF/CeO2 nanoparticles through Tafel polarization techniques. In psi, the force of adhesion was measured between the coating layer and the substrates. The PVDF/CeO2-coated steel had a significantly greater water contact angle and lower contact angle hysteresis than coated aluminium and glass substrates, reaching 157 ± 2° and 8 ± 1°, respectively. The corrosion protection efficiency of the superhydrophobic PVDF/CeO2 coatings was considerably higher for steel and aluminium when compared with PVDF coatings. The PVDF/CeO2 coated substrates had modest adhesion between the coating layer and the substrates, but it was still acceptable. Furthermore, the PVDF/CeO2 coatings outperformed PVDF alone in terms of mechanical properties.

18.
Biosensors (Basel) ; 12(11)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36421146

ABSTRACT

We developed a new optical sensor for tracing Hg(II) ions. The detection affinity examines within a concentration range of 0-4.0 µM Hg(II). The sensor film is based on Methyl 2-hydroxy-3-(((2S,2'R,3a'S,5R)-2-isopropyl-5,5'-dimethyl-4'-oxotetrahydro-2'H-spiro[cy-clohexane-1,6'-im-idazo[1,5-b]isoxazol]-2'-yl)methyl)-5-methylbenzoate (IXZD). The novel synthesized compound could be utilized as an optical turn-on chemosensor for pH. The emission intensity is highly enhanced for the deprotonated form concerning the protonated form. IXZD probe has a characteristic fluorescence peak at 481 nm under excitation of 351 nm with large Stocks shift of approximately 130 nm. In addition, the binding process of IXZD:Hg(II) presents a 1:1 molar ratio which is proved by the large quench of the 481 nm emission peak of IXZD and the growth of a new emission peak at 399 nm (blue shift). The binding configurations with one Hg(II) cation and its electronic characteristics were investigated by applying the Density Functional Theory (DFT) and the time-dependent DFT (TDDFT) calculations. Density functional theory (DFT) and the time-dependent DFT (TDDFT) theoretical results were provided to examine Hg(II)-IXZD structures and their electronic properties in solution. The developed chemical sensor was offered based on the intramolecular charge transfer (ICT) mechanism. The sensor film has a significantly low limit of detection (LOD) for Hg(II) of 0.025 µM in pH 7.4, with a relative standard deviation RSDr (1%, n = 3). Lastly, the IXZD shows effective binding affinity to mercury ions, and the binding constant Kb was estimated to be 5.80 × 105 M-1. Hence, this developed optical sensor film has a significant efficiency for tracing mercury ions based on IXZD molecule-doped sensor film.


Subject(s)
Mercury , Mercury/chemistry , Ions , Limit of Detection , Spectrometry, Fluorescence , Hydrogen-Ion Concentration
19.
ACS Omega ; 7(38): 34002-34011, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36188249

ABSTRACT

Currently, particular attention is paid to public health related to the field of γ-ray dosimetry, which is becoming increasingly important in medical diagnostic processes. Incorporating sensitive dyes as radiation dose sensors in different material hosts has shown promising radiation dosimetry application routes. In this perspective, the current study proposes a new fluorescent dye based on boron difluoride complex, the pyridomethene-BF2 named 2-(1-(difluoroboraneyl)-1,2-dihydroquinolin-2-yl)-2-(1-methylquinoxalin-2-ylidene) acetonitrile (DBDMA) as an indicator for low γ-ray doses. The different optical and quantum chemical parameters and the spectral behavior of the selected fluorescent dye were first studied. Then, PVP/DBDMA electrospun nanofibers and PVA/DBDMA thin films were prepared. The different UV-vis spectrophotometric and fluorescence studies revealed a clear change after exposure to different γ-ray doses. Thermogravimetric analysis exhibited excellent thermal stability of the prepared nanocomposite films, showing altered thermal behavior after γ-ray treatment. Furthermore, the SEM evaluation displayed a significant modification in the surface morphology of the two designed nanomaterials with increased radiation dose intensity. These novel forms of dosimeter designed in nanoscale composites could therefore constitute a promising and efficient alternative for rapid and accurate detection of low doses of γ-rays in various medical applications.

20.
Molecules ; 27(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36296551

ABSTRACT

New 1,3,4-thiadiazole thioglycosides linked to a substituted arylidine system were synthesized via heterocyclization via click 1,3-dipolar cycloaddition. The click strategy was used for the synthesis of new 1,3,4-thiadiazole and 1,2,3-triazole hybrid glycoside-based indolyl systems as novel hybrid molecules by reacting azide derivatives with the corresponding acetylated glycosyl terminal acetylenes. The cytotoxic activities of the compounds were studied against HCT-116 (human colorectal carcinoma) and MCF-7 (human breast adenocarcinoma) cell lines using the MTT assay. The results showed that the key thiadiazolethione compounds, the triazole glycosides linked to p-methoxyarylidine derivatives and the free hydroxyl glycoside had potent activity comparable to the reference drug, doxorubicin, against MCF-7 human cancer cells. Docking simulation studies were performed to check the binding patterns of the synthesized compounds. Enzyme inhibition assay studies were also conducted for the epidermal growth factor receptor (EGFR), and the results explained the activity of a number of derivatives.


Subject(s)
Antineoplastic Agents , Thioglycosides , Humans , Molecular Docking Simulation , Triazoles/chemistry , Glycosides/pharmacology , Azides/pharmacology , Structure-Activity Relationship , Cell Proliferation , Thioglycosides/chemistry , Antineoplastic Agents/chemistry , ErbB Receptors/metabolism , MCF-7 Cells , Doxorubicin/pharmacology , Alkynes/pharmacology , Molecular Structure , Drug Screening Assays, Antitumor
SELECTION OF CITATIONS
SEARCH DETAIL
...