Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37761990

ABSTRACT

Recent studies have highlighted the therapeutic potential of small extracellular bodies derived from mesenchymal stem cells (MSC-sEVs) for various diseases, notably through their ability to alter T-cell differentiation and function. The current study aimed to explore immunomodulatory pathway alterations within T cells through mRNA sequencing of activated T cells cocultured with bone marrow-derived MSC-sEVs. mRNA profiling of activated human T cells cocultured with MSC-sEVs or vehicle control was performed using the QIAGEN Illumina sequencing platform. Pathway networks and biological functions of the differentially expressed genes were analyzed using Ingenuity pathway analysis (IPA)® software, KEGG pathway, GSEA and STRING database. A total of 364 differentially expressed genes were identified in sEV-treated T cells. Canonical pathway analysis highlighted the RhoA signaling pathway. Cellular development, movement, growth and proliferation, cell-to-cell interaction and inflammatory response-related gene expression were altered. KEGG enrichment pathway analysis underscored the apoptosis pathway. GSEA identified enrichment in downregulated genes associated with TNF alpha and interferon gamma response, and upregulated genes related to apoptosis and migration of lymphocytes and T-cell differentiation gene sets. Our findings provide valuable insights into the mechanisms by which MSC-sEVs implement immunomodulatory effects on activated T cells. These findings may contribute to the development of MSC-sEV-based therapies.


Subject(s)
Extracellular Vesicles , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/genetics , Interferon-gamma , T-Lymphocytes , Apoptosis/genetics
2.
Biomedicines ; 10(8)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35892693

ABSTRACT

Phytocannabinoids possess a wide range of immune regulatory properties, mediated by the endocannabinoid system. Monocyte/macrophage innate immune cells express endocannabinoid receptors. Dysregulation of macrophage function is involved in the pathogenesis of different inflammatory diseases, including inflammatory bowel disease. In our research, we aimed to evaluate the effects of the phytocannabinoids D9 tetrahydrocannabinol (THC) and cannabidiol (CBD) on macrophage activation. Macrophages from young and aged C57BL/6 mice were activated in vitro in the presence of pure cannabinoids or cannabis extracts. The phenotype of the cells, nitric oxide (NO•) secretion, and cytokine secretion were examined. In addition, these treatments were administered to murine colitis model. The clinical statuses of mice, levels of colon infiltrating macrophages, and inflammatory cytokines in the blood, were evaluated. We demonstrated inhibition of macrophage NO• and cytokine secretion and significant effects on expression of cell surface molecules. In the murine model, clinical scores were improved and macrophage colon infiltration reduced following treatment. We identified higher activity of cannabis extracts as compared with pure cannabinoids. Each treatment had a unique effect on cytokine composition. Overall, our results establish that the effects of cannabinoid treatments differ. A better understanding of the reciprocal relationship between cannabinoids and immunity is essential to design targeted treatment strategies.

3.
Int J Mol Sci ; 21(12)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32585801

ABSTRACT

The Cannabis plant contains numerous components, including cannabinoids and other active molecules. The phyto-cannabinoid activity is mediated by the endocannabinoid system. Cannabinoids affect the nervous system and play significant roles in the regulation of the immune system. While Cannabis is not yet registered as a drug, the potential of cannabinoid-based medicines for the treatment of various conditions has led many countries to authorize their clinical use. However, the data from basic and medical research dedicated to medical Cannabis is currently limited. A variety of pathological conditions involve dysregulation of the immune system. For example, in cancer, immune surveillance and cancer immuno-editing result in immune tolerance. On the other hand, in autoimmune diseases increased immune activity causes tissue damage. Immuno-modulating therapies can regulate the immune system and therefore the immune-regulatory properties of cannabinoids, suggest their use in the therapy of immune related disorders. In this contemporary review, we discuss the roles of the endocannabinoid system in immunity and explore the emerging data about the effects of cannabinoids on the immune response in different pathologies. In addition, we discuss the complexities of using cannabinoid-based treatments in each of these conditions.


Subject(s)
Cannabinoid Receptor Modulators/metabolism , Cannabis/chemistry , Endocannabinoids/pharmacology , Immunity/drug effects , Animals , Humans
4.
Rambam Maimonides Med J ; 11(1)2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32017682

ABSTRACT

In the last decade, we have observed an increased public and scientific interest in the clinical applications of medical cannabis. Currently, the application of cannabinoids in cancer patients is mainly due to their analgesic and anti-emetic effects. The direct effects of phyto-cannabinoids on cancer cells are under intensive research, and the data remain somewhat inconsistent. Although anti-proliferative properties were observed in vitro, conclusive data from animal models and clinical trials are lacking. Since immunotherapy of malignant diseases and bone marrow transplantation are integral approaches in hemato-oncology, the immuno-modulatory characteristic of cannabinoids is a fundamental aspect for consideration. The effect of cannabinoids on the immune system is presently under investigation, and some evidence for its immuno-regulatory properties has been shown. In addition, the interaction of cannabinoids and classical cytotoxic agents is a subject for further investigation. Here we discuss the current knowledge of cannabinoid-based treatments in preclinical models and the limited data in oncological patients. Particularly, we address the possible contradiction between the direct anti-tumor and the immune-modulatory effects of cannabinoids. Better understanding of the mechanism of cannabinoids influence is essential to design therapies that will allow cannabinoids to be incorporated into the clinic.

5.
Rambam Maimonides Med J ; 11(1)2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32017686

ABSTRACT

Public health is connected to cannabis with regard to food, animal feed (feed), and pharmaceuticals. Therefore, the use of phytocannabinoids should be examined from a One Health perspective. Current knowledge on medical cannabis treatment (MCT) does not address sufficiently diseases which are of epidemiological and of zoonotic concern. The use of cannabinoids in veterinary medicine is illegal in most countries, mostly due to lack of evidence-based medicine. To answer the growing need of scientific evidence-based applicable medicine in both human and veterinary medicine, a new approach for the investigation of the therapeutic potential of cannabinoids must be adopted. A model that offers direct study of a specific disease in human and veterinary patients may facilitate development of novel therapies. Therefore, we urge the regulatory authorities-the ministries of health and agriculture (in Israel and worldwide)-to publish guidelines for veterinary use due to its importance to public health, as well as to promote One Health-related preclinical translational medicine studies for the general public health.

6.
Sci Rep ; 9(1): 12876, 2019 10 02.
Article in English | MEDLINE | ID: mdl-31578341

ABSTRACT

An autoimmune response against myelin protein is considered one of the key pathogenic processes that initiates multiple sclerosis (MS). The currently available MS disease modifying therapies have demonstrated to reduce the frequency of inflammatory attacks. However, they appear limited in preventing disease progression and neurodegeneration. Hence, novel therapeutic approaches targeting both inflammation and neuroregeneration are urgently needed. A new pregnancy derived synthetic peptide, synthetic PreImplantation Factor (sPIF), crosses the blood-brain barrier and prevents neuro-inflammation. We report that sPIF reduces paralysis and de-myelination of the brain in a clinically-relevant experimental autoimmune encephalomyelitis mice model. These effects, at least in part, are due to post-translational modifications, which involve cyclic AMP dependent protein kinase (PKA), calcium-dependent protein kinase (PKC), and immune regulation. In terms of potential MS treatment, sPIF was successfully tested in neurodegenerative animal models of perinatal brain injury and experimental autoimmune encephalitis. Importantly, sPIF received a FDA Fast Track Approval for first in human trial in autommuninty (completed).


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Paralysis , Peptides , Protein Processing, Post-Translational/drug effects , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Mice , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Paralysis/drug therapy , Paralysis/metabolism , Paralysis/pathology , Peptides/pharmacokinetics , Peptides/pharmacology
7.
PLoS One ; 14(6): e0217572, 2019.
Article in English | MEDLINE | ID: mdl-31188842

ABSTRACT

Steroid-resistant GvHD is one of the most significant causes of mortality following allogeneic Hematopoietic Stem Cell Transplantation (HSCT). Treatment with mesenchymal stromal cells (MSC) seems to be a promising solution, however the results from clinical studies are still equivocal. Better selection of candidate patients and improving monitoring of patients following MSC administration can increase treatment effectiveness. In order to determine which characteristics can be used to predict a good response and better monitoring of patients, blood samples were taken prior to therapy, one week and one month after therapy, from 26 allogeneic HSCT patients whom contracted GvHD and were treated with MSCs. Samples were examined for differential blood counts, bilirubin levels and cell surface markers. Serum cytokine levels were also measured. We found that the level of lymphocytes, in particular T and NK cells, may predict a good response to therapy. A better response was observed among patients who expressed low levels of IL-6 and IL-22, Th17 related cytokines, prior to therapy. Patients with high levels of bilirubin prior to therapy showed a poorer response. The results of this study may facilitate early prediction of success or failure of the treatment, and subsequently, will improve selection of patients for MSC therapy.


Subject(s)
Anemia, Aplastic/therapy , Graft vs Host Disease/diagnosis , Hematologic Neoplasms/therapy , Killer Cells, Natural/pathology , Mesenchymal Stem Cell Transplantation , T-Lymphocytes/pathology , Thalassemia/therapy , Adolescent , Adult , Anemia, Aplastic/immunology , Anemia, Aplastic/mortality , Anemia, Aplastic/pathology , Antineoplastic Agents/therapeutic use , Bilirubin , Biomarkers/blood , Female , Graft vs Host Disease/immunology , Graft vs Host Disease/mortality , Graft vs Host Disease/pathology , Hematologic Neoplasms/immunology , Hematologic Neoplasms/mortality , Hematologic Neoplasms/pathology , Humans , Interleukin-6/blood , Interleukins , Killer Cells, Natural/immunology , Lymphocyte Count , Male , Middle Aged , Prognosis , Severity of Illness Index , Survival Analysis , T-Lymphocytes/immunology , Thalassemia/immunology , Thalassemia/mortality , Thalassemia/pathology , Transplantation, Homologous , Treatment Outcome , Interleukin-22
8.
Int J Mol Sci ; 20(3)2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30720730

ABSTRACT

Cannabinoids, the biologically active constituents of Cannabis, have potent neuronal and immunological effects. However, the basic and medical research dedicated to medical cannabis and cannabinoids is limited. The influence of these treatments on hematologic reconstitution and on the development of graft versus host disease (GVHD) after bone marrow transplantation (BMT) is largely unknown. In this research, we compared the influence of D9 tetrahydrocannabinol (THC) and cannabidiol (CBD) on lymphocyte activation in vitro and in murine BMT models. Our in vitro results demonstrate that these treatments decrease activated lymphocyte proliferation and affect cytokine secretion. We also discovered that CBD and THC utilize different receptors to mediate these effects. In vivo, in a syngeneic transplantation model, we demonstrate that all treatments inhibit lymphocyte reconstitution and show the inhibitory role of the cannabinoid receptor type 2 (CB2) on lymphocyte recovery. Although pure cannabinoids exhibited a superior effect in vitro, in an allogeneic (C57BL/6 to BALB/c) BMT mouse model, THC-high and CBD-high cannabis extracts treatment reduced the severity of GVHD and improved survival significantly better than the pure cannabinoids. Our results highlights the complexity of using cannabinoids-based treatments and the need for additional comparative scientific results.


Subject(s)
Bone Marrow Transplantation/adverse effects , Cannabidiol/pharmacology , Dronabinol/pharmacology , Graft vs Host Disease/drug therapy , Inflammation/drug therapy , Lymphocyte Activation/drug effects , Animals , Cannabidiol/therapeutic use , Disease Models, Animal , Dronabinol/therapeutic use , Female , Graft vs Host Disease/etiology , Graft vs Host Disease/pathology , Inflammation/etiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Treatment Outcome
9.
Front Immunol ; 9: 3053, 2018.
Article in English | MEDLINE | ID: mdl-30622539

ABSTRACT

Background: Bone marrow mesenchymal stem cells (bmMSC) may play a role in the regulation of maturation, proliferation, and functional activation of lymphocytes, though the exact mechanisms are unknown. MSC-derived exosomes induce a regulatory response in the function of B, T, and monocyte-derived dendritic cells. Here, we evaluated the specific inhibition of human lymphocytes by bmMSC-derived exosomes and the effects on B-cell function. Methods: Exosomes were isolated from culture media of bmMSC obtained from several healthy donors. The effect of purified bmMSC-derived exosomes on activated peripheral blood mononuclear cells (PBMCs) and isolated B and T lymphocyte proliferation was measured by carboxyfluorescein succinimidyl ester assay. Using the Illumina sequencing platform, mRNA profiling was performed on B-lymphocytes activated in the presence or absence of exosomes. Ingenuity® pathway analysis software was applied to analyze pathway networks, and biological functions of the differentially expressed genes. Validation by RT-PCR was performed. The effect of bmMSC-derived exosomes on antibody secretion was measured by ELISA. Results: Proliferation of activated PBMCs or isolated T and B cells co-cultured with MSC-derived exosomes decreased by 37, 23, and 18%, respectively, compared to controls. mRNA profiling of activated B-lymphocytes revealed 186 genes that were differentially expressed between exosome-treated and control cells. We observed down- and up-regulation of genes that are involved in cell trafficking, development, hemostasis, and immune cell function. RNA-Seq results were validated by real time PCR analysis for the expression of CXCL8 (IL8) and MZB1 genes that are known to have an important role in immune modulation. Functional alterations were confirmed by decreased IgM production levels. Consistent results were demonstrated among a wide variety of healthy human bmMSC donors. Conclusion: Our data show that exosomes may play an important role in immune regulation. They inhibit proliferation of several types of immune cells. In B-lymphocytes they modulate cell function by exerting differential expression of the mRNA of relevant genes. The results of this study help elucidate the mechanisms by which exosomes induce immune regulation and may contribute to the development of newer and safer therapeutic strategies.


Subject(s)
B-Lymphocytes/immunology , Exosomes/immunology , Lymphocyte Activation , Mesenchymal Stem Cells/cytology , RNA, Messenger/metabolism , Adult , B-Lymphocytes/metabolism , Cell Proliferation , Cells, Cultured , Coculture Techniques , Down-Regulation/immunology , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Primary Cell Culture , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Up-Regulation/immunology , Young Adult
10.
Oncotarget ; 8(32): 53563-53580, 2017 Aug 08.
Article in English | MEDLINE | ID: mdl-28881832

ABSTRACT

Sphingolipid derivatives play key roles in immune cell migration and function. Synthetic sphingolipid analogues are used as therapeutics to intervene various inflammatory and malignant conditions. We hypothesize that different analogs have different effects on immune cells and therefore can be used as treatment for specific diseases. This study examines the properties of the novel synthetic sphingolipid analog, AD2900, and its effects on immune cell activation and lymphocyte localization in homeostasis. AD2900 is an antagonist for all sphingosine-1-phosphate (S1P) receptors. It demonstrates a significant inhibitory effect on the proliferation of activated human peripheral blood mononuclear cells, which is dependent on cAMP reduction and calcium signal transduction but not on phospholipase C activation. AD2900 causes a significant but reversible downregulation of S1P1 expression on the cell surface. AD2900 administration to C57BL/6J mice leads to the accumulation of T cells in the blood and spleen and in turn reduces T-cell number in the lymph nodes. Moreover, AD2900 treatment shows significant effects on the localization of T-cell subpopulations. These results demonstrate the key roles of S1P in T-cell trafficking in a steady state and suggest a potential clinical application for AD2900. Notably, this sphingolipid analog does not cause a severe lymphopenia. The clinical effect of AD2900 in hemato-oncologic diseases and immune-related diseases needs further investigation.

11.
Oncotarget ; 7(37): 58975-58994, 2016 Sep 13.
Article in English | MEDLINE | ID: mdl-27449294

ABSTRACT

Acute Radiation Syndrome (ARS) may lead to cancer and death and has few effective countermeasures. Efficacy of synthetic PIF treatment was demonstrated in preclinical autoimmune and transplantation models. PIF protected against inflammation and mortality following lethal irradiation in allogeneic bone marrow transplant (BMT) model. Herein, we demonstrate that PIF imparts comprehensive local and systemic protection against lethal and sub-lethal ARS in murine models. PIF treatment 2 h after lethal irradiation led to 100% survival and global hematopoietic recovery at 2 weeks after therapy. At 24 h after irradiation PIF restored hematopoiesis in a semi-allogeneic BMT model. PIF-preconditioning provided improved long-term engraftment. The direct effect of PIF on bone marrow cells was also demonstrated in vitro: PIF promoted pre-B cell differentiation and increased immunoregulatory properties of BM-derived mesenchymal stromal cells. PIF treatment also improved hematopoietic recovery and reduced systemic inflammatory cytokine production after sub-lethal radiation exposure. Here, PIF also prevented colonic crypt and basal membrane damage coupled with reduced nitric oxide synthetase (iNOS) and increased (B7h1) expression. Global upper GI gene pathway analysis revealed PIF's involvement in protein-RNA interactions, mitochondrial oxidative pathways, and responses to cellular stress. Some effects may be attributed to PIF's influence on macrophage differentiation and function. PIF demonstrated a regulatory effect on irradiated macrophages and on classically activated M1 macrophages, reducing inflammatory gene expression (iNOS, Cox2), promoting protective (Arg1) gene expression and inducing pro-tolerance cytokine secretion. Notably, synthetic PIF is stable for long-term field use. Overall, clinical investigation of PIF for comprehensive ARS protection is warranted.


Subject(s)
Acute Radiation Syndrome/prevention & control , Bone Marrow Transplantation , Proteoglycans/therapeutic use , Radiation-Protective Agents/therapeutic use , Animals , Cells, Cultured , Disease Models, Animal , Female , Graft Survival , Hematopoiesis/drug effects , Humans , Male , Mice , Mice, Inbred C57BL , Pregnancy , Transplantation Conditioning , Transplantation, Homologous , Whole-Body Irradiation
12.
Immunobiology ; 221(7): 778-93, 2016 07.
Article in English | MEDLINE | ID: mdl-26944449

ABSTRACT

Secreted by viable embryos, PIF is expressed by the placenta and found in maternal circulation. It promotes implantation and trophoblast invasion, achieving systemic immune homeostasis. Synthetic PIF successfully transposes endogenous PIF features to non-pregnant immune and transplant models. PIF affects innate and activated PBMC cytokines and genes expression. We report that PIF targets similar proteins in CD14+, CD4+ and CD8+ cells instigating integrated immune regulation. PIF-affinity chromatography followed by mass-spectrometry, pathway and heatmap analysis reveals that SET-apoptosis inhibitor, vimentin, myosin-9 and calmodulin are pivotal for immune regulation. PIF acts on macrophages down-stream of LPS (lipopolysaccharide-bacterial antigen) CD14/TLR4/MD2 complex, targeting myosin-9, thymosin-α1 and 14-3-3eta. PIF mainly targets platelet aggregation in CD4+, and skeletal proteins in CD8+ cells. Pathway analysis demonstrates that PIF targets and regulates SET, tubulin, actin-b, and S100 genes expression. PIF targets systemic immunity and has a short circulating half-life. Collectively, PIF targets identified; protective, immune regulatory and cytoskeleton proteins reveal mechanisms involved in the observed efficacy against immune disorders.


Subject(s)
Cytoskeleton/metabolism , Leukocytes, Mononuclear/immunology , Pregnancy Proteins/metabolism , Calmodulin/metabolism , Cells, Cultured , Computational Biology , Female , Humans , Immunity, Humoral , Immunomodulation , Molecular Motor Proteins/metabolism , Myosin Heavy Chains/metabolism , Pregnancy , Pregnancy Proteins/genetics , Signal Transduction , Toll-Like Receptor 4/metabolism , Vimentin/metabolism
13.
Stem Cells ; 33(7): 2256-67, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25850816

ABSTRACT

Over the past decade there has been a growing interest in using mesenchymal stem cells (MSCs) as an immune-regulatory agent for prevention and treatment of various immune disorders including graft-versus-host disease (GVHD), transplanted organ rejection, and autoimmune diseases. However, the high diversity in the results from clinical trials using MSCs for such disorders emphasizes the need for MSCs to be "professionalized" ex vivo to a more defined regulatory phenotype before administering to patients. To this aim, we have established an ex vivo immunomodulatory triple combination treatment (TCT) for MSCs, using IFNγ, TGFß, and kynurenine. We show that pretreated MSCs acquire an immunomodulatory phenotype, have improved regulatory functions, and upregulate the expression of inducible nitric oxide synthase, indoleamine 2,3-dioxygenase, cyclooxygenase-2 (COX2), heme oxygenase 1, leukemia inhibitory factor (LIF), and programmed death ligand 1. We define the pathway of kynurenine induced aryl hydrocarbon receptor activation in MSCs and how it contributes to the upregulation of COX2 expression and IL-6 downregulation. The combination of reduced IL-6 secretion with enhanced LIF expression leads to the inhibition of Th17 differentiation in coculture of TCT MSCs and lymphocytes. To test the immunomodulatory function of TCT MSCs in vivo, we used the cells as GVHD prophylaxis in a GVHD mouse model. TCT MSCs administration significantly decreased GVHD score and improved mouse survival. Importantly, single administration could attenuate disease symptoms for more than 3 weeks. Based on these results, we suggest considering TCT MSCs as an improved cell therapy for systemic diseases with an underlying inflammatory and immunologic etiology. Stem Cells 2015;33:2256-2267.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Immunomodulation/genetics , Mesenchymal Stem Cells/immunology , Animals , Cell Differentiation , Disease Models, Animal , Female , Humans , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
14.
Eur J Immunol ; 44(1): 58-68, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24185712

ABSTRACT

TCR-mediated activation induces receptor microclusters that evolve to a defined immune synapse (IS). Many studies showed that actin polymerization and remodeling, which create a scaffold critical to IS formation and stabilization, are TCR mediated. However, the mechanisms controlling simultaneous TCR and actin dynamic rearrangement in the IS are yet not fully understood. Herein, we identify two novel TCR ζ-chain motifs, mediating the TCR's direct interaction with actin and inducing actin bundling. While T cells expressing the ζ-chain mutated in these motifs lack cytoskeleton (actin) associated (cska)-TCRs, they express normal levels of non-cska and surface TCRs as cells expressing wild-type ζ-chain. However, such mutant cells are unable to display activation-dependent TCR clustering, IS formation, expression of CD25/CD69 activation markers, or produce/secrete cytokine, effects also seen in the corresponding APCs. We are the first to show a direct TCR-actin linkage, providing the missing gap linking between TCR-mediated Ag recognition, specific cytoskeleton orientation toward the T-cell-APC interacting pole and long-lived IS maintenance.


Subject(s)
Cytoskeleton/metabolism , Immunological Synapses/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , Actins/metabolism , Amino Acid Motifs/genetics , Animals , Cells, Cultured , Cytokines/metabolism , Female , Immunological Synapses/immunology , Lymphocyte Activation/genetics , Mice , Mice, Inbred BALB C , Mice, Knockout , Mice, Mutant Strains , Mutation/genetics , Receptor Aggregation/genetics , Receptors, Antigen, T-Cell/genetics
15.
Biol Blood Marrow Transplant ; 19(4): 519-28, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23266739

ABSTRACT

Bone marrow transplantation (BMT) to treat severe hematologic malignancies often leads to potentially fatal acute graft-versus-host disease (GVHD), despite attempts at better donor-recipient matching and/or use of immunosuppressive agents. We report that embryo-derived PreImplantation Factor (PIF) plays a determining role in developing maternal/host tolerance toward the semiallogeneic or total allogeneic embryo and in regulating systemic immune response. Synthetic PIF treatment has proven effective in preventing immune attacks in nonpregnant models of autoimmunity. In this study, we tested the capability of PIF to prevent the development of acute GVHD in semiallogeneic or totally allogeneic murine BMT models. We examined the regulatory effect of PIF both in vivo and in vitro to control deleterious GVHD while maintaining its ability to preserve the beneficial graft-versus-leukemia (GVL) effect. Bone marrow and spleen cells from C57BL/6 donors were transplanted in semiallogeneic (C57BL/6xBALB/c) F1 or allogeneic (BALB/c) mice, which were then treated with PIF 1 mg/kg/day for 2 weeks. Short-term PIF administration reduced acute GVHD in both models and increased survival for up to 4 months after semiallogeneic or totally allogeneic BMT. This effect was coupled with decreased skin inflammation (semiallogeneic model) and decreased liver inflammation (both models), as well as reduced colon ulceration (allogeneic model). GVHD-associated cytokine and chemokine gene expression were decreased in the liver. PIF further lowered circulating IL-17 levels, but not IFN-γ levels. Both in vivo and in vitro, PIF treatment was demonstrated to lead to decreased inducible nitric oxide synthase expression and decreased lipopolysaccharide-activated macrophages to lower nitric oxide secretion. Significantly, PIF did not diminish the beneficial GVL effect in the B cell leukemia model. PIF acts primarily by inducing the regulatory phenotype on monocytes/antigen-presenting cells, which controls T cell proliferation. Overall, our data demonstrate that PIF protects against semiallogeneic and allogeneic GVHD long term by reducing both target organ and systemic inflammation and by decreasing oxidative stress, while preserving the beneficial GVL effect.


Subject(s)
Bone Marrow Transplantation/immunology , Graft vs Host Disease/prevention & control , Graft vs Leukemia Effect/immunology , Peptides/pharmacology , Animals , Bone Marrow Transplantation/mortality , Cell Proliferation/drug effects , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/pathology , Immune Tolerance/drug effects , Inflammation/prevention & control , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Interleukin-17/biosynthesis , Interleukin-17/immunology , Liver/drug effects , Liver/immunology , Liver/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type II/genetics , Oxidative Stress/drug effects , Skin/drug effects , Skin/immunology , Skin/pathology , Spleen/drug effects , Spleen/immunology , Spleen/pathology , Survival Analysis , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Transplantation, Homologous
16.
Transpl Immunol ; 27(4): 184-8, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22801052

ABSTRACT

Formation of donor-recipient mixed chimerism after nonmyeloablative conditioning allows co-existence of donor and recipient hematopoietic stem cells, with solid organ allograft tolerance and less likeliness of graft versus host development. Using a post-transplant bronchiolitis obliterans murine model, we aimed to test the hypothesis that allograft preservation after mixed chimerism formation is dependent on the presence of a functional Fas ligand (FasL) on donor hematopoietic cells. To form mixed chimerism, two aliquots of 30 × 10(6) whole bone marrow cells (BMC) from either wild-type C57BL/6 in one group, or transgenic gld mice with mutant FasL (d = 0 and 2+) in the other were used, with both groups receiving intravenous busulfan (10mg/kg) on d-1 and intraperitoneal cyclophosphamide (200mg/kg) on d+1. Tracheal allografts obtained from C57BL/6 mice were implanted into recipient BALB/c mice subcutaneously on d = 0. Tracheal allografts were harvested at d+28 post-transplant and were evaluated by histopathology. Mixed chimerism formation was detected in wild type C57BL/6 whole BMC recipients, which was accompanied by tracheal allograft acceptance with near normal structure at d+28 post implantation. However, in recipients of FasL mutant whole BMC, neither mixed chimerism formation nor tracheal allograft acceptance was obtained. We thus conclude that bone marrow cells lacking functional FasL molecules could not be engrafted in allogeneic recipients to form stable mixed chimerism after nonmyeloablative conditioning, thus not allowing tracheal allograft acceptance.


Subject(s)
Bone Marrow Cells/immunology , Fas Ligand Protein/genetics , Fas Ligand Protein/immunology , Transplantation Chimera/immunology , Transplantation Conditioning/methods , Transplantation Tolerance/immunology , Animals , Hematopoietic Stem Cell Transplantation , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Mutant Strains , Mice, Transgenic , Mutation , Tissue Donors , Trachea/pathology , Trachea/transplantation , Transplantation, Homologous
17.
J Neurol Sci ; 312(1-2): 146-57, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-21996270

ABSTRACT

INTRODUCTION: Embryo-derived PIF modulates systemic maternal immunity without suppression. Synthetic analog (sPIF) prevents juvenile diabetes, preserves islet function, reducing oxidative stress/protein misfolding. We investigate sPIF effectiveness in controlling neuroinflammation/MS. METHODS: Examine sPIF-induced protection against harsh, clinical-relevant murine EAE-PLP acute and chronic models. Evaluate clinical indices: circulating cytokines, spinal cord histology, genome, canonical global proteome, cultured PLP-activated splenocytes cytokines, and immunophenotype. RESULTS: Short-term, low-dose sPIF prevented paralysis development and lowered mortality (P<0.05). Episodic sPIF reversed chronic paralysis (P<0.0001) completely in >50%, by day 82. Prevention model: 12days post-therapy, sPIF reduced circulating IL12 ten-fold and inflammatory cells access to spinal cord. Regression model: sPIF blocked PLP-induced IL17 and IL6 secretions. Long-term chronic model: sPIF reduced spinal cord pro-inflammatory cytokines/chemokines, (ALCAM, CF1, CCL8), apoptosis-promoters, inflammatory cells access (JAM3, OPA1), solute channels (ATPases), aberrant coagulation factors (Serpins), and pro-antigenic MOG. Canonical proteomic analysis demonstrated reduced oxidative phosphorylation, vesicle traffic, cytoskeleton remodeling involved in neuro-cytoskeleton breakdown (tubulins), associated with axon re-assembly by (MTAPs)/improved synaptic transmission. CONCLUSION: sPIF--through coordinated central and systemic multi-targeted action--reverses neuroinflammation/MS and imparts significant neuroprotective effects up to total paralysis resolution. Clinical testing is warranted and planned.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Inflammation Mediators/pharmacology , Nerve Regeneration/drug effects , Peptides/pharmacology , Animals , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Female , Inflammation Mediators/therapeutic use , Mice , Mice, Inbred Strains , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Nerve Regeneration/immunology , Peptides/therapeutic use , Random Allocation
18.
Endocrine ; 40(1): 41-54, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21424847

ABSTRACT

Preimplantation factor (PIF) is a novel embryo-secreted immunomodulatory peptide. Its synthetic analog (sPIF) modulates maternal immunity without suppression. There is an urgent need to develop agents that could prevent the development of type 1 diabetes mellitus (TIDM). Herein, we examine sPIF's preventive effect on TIDM development by using acute adoptive-transfer (ATDM) and spontaneously developing (SDM) in non-obese diabetic (NOD) murine models. Diabetes was evaluated by urinary and plasma glucose, intraperitoneal glucose tolerance test (IPGTT), pancreatic islets insulin staining by immunohistochemistry and by pancreatic proteome evaluation using mass spectrometry, followed by signal pathway analysis. Continuous administration of sPIF for 4-weeks prevents diabetes development in ATDM model in >90% of recipients demonstrated by normal IPGTT, preserved islets architecture, number, and insulin staining. (P < 0.01). sPIF effect was specific; its protective effects are not replicated by scrambled PIF (χ(2) = 0.009) control. sPIF led also to increased circulating Th2 and Th1 cytokines. In SDM model, 4-week continuous sPIF administration prevented onset of diabetes for 21 weeks post-therapy (P < 0.01). Low-dose sPIF administration for 16 weeks prevented diabetes development up to 14 weeks post-therapy, evidenced by preserved islets architecture and insulin staining. In SDM model, pancreatic proteome pathway analysis demonstrated that sPIF regulates protein traffic, prevents protein misfolding and aggregation, and reduces oxidative stress and islets apoptosis, leading to preserved insulin staining. sPIF further increased insulin receptor expression and reduced actin and tubulin proteins, thereby blocking neutrophil invasion and inflammation. Exocrine pancreatic function was also preserved. sPIF administration results in marked prevention of spontaneous and induced adoptive-transfer diabetes suggesting its potential effectiveness in treating early-stage TIDM.


Subject(s)
Diabetes Mellitus, Type 1/prevention & control , Pancreas/drug effects , Pancreas/physiology , Peptides/pharmacology , Peptides/therapeutic use , Animals , Apoptosis/drug effects , Cytokines/blood , Diabetes Mellitus, Type 1/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Implants , Female , Glucose/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , Male , Mice , Mice, Inbred NOD , Oxidative Stress/drug effects , Pancreas/metabolism , Peptides/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...