Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Struct Biotechnol J ; 23: 626-637, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38274997

ABSTRACT

Gut microbiota is recognized nowadays as one of the key players in the development of several gastro-intestinal diseases. The first studies focused mainly on healthy subjects with staining of main bacterial species via culture-based techniques. Subsequently, lots of studies tried to focus on principal esophageal disease enlarged the knowledge on esophageal microbial environment and its role in pathogenesis. Gastro Esophageal Reflux Disease (GERD), the most widespread esophageal condition, seems related to a certain degree of mucosal inflammation, via interleukin (IL) 8 potentially enhanced by bacterial components, lipopolysaccharide (LPS) above all. Gram- bacteria, producing LPS), such as Campylobacter genus, have been found associated with GERD. Barrett esophagus (BE) seems characterized by a Gram- and microaerophils-shaped microbiota. Esophageal cancer (EC) development leads to an overturn in the esophageal environment with the shift from an oral-like microbiome to a prevalently low-abundant and low-diverse Gram--shaped microbiome. Although underinvestigated, also changes in the esophageal microbiome are associated with rare chronic inflammatory or neuropathic disease pathogenesis. The paucity of knowledge about the microbiota-driven mechanisms in esophageal disease pathogenesis is mainly due to the scarce sensitivity of sequencing technology and culture methods applied so far to study commensals in the esophagus. However, the recent advances in molecular techniques, especially with the advent of non-culture-based genomic sequencing tools and the implementation of multi-omics approaches, have revolutionized the microbiome field, with promises of implementing the current knowledge, discovering more mechanisms underneath, and giving insights into the development of novel therapies aimed to re-establish the microbial equilibrium for ameliorating esophageal diseases..

2.
Front Plant Sci ; 14: 1284478, 2023.
Article in English | MEDLINE | ID: mdl-38107002

ABSTRACT

Sour cherry (Prunus cerasus L.) is an important allotetraploid cherry species that evolved in the Caspian Sea and Black Sea regions from a hybridization of the tetraploid ground cherry (Prunus fruticosa Pall.) and an unreduced pollen of the diploid sweet cherry (P. avium L.) ancestor. Details of when and where the evolution of this species occurred are unclear, as well as the effect of hybridization on the genome structure. To gain insight, the genome of the sour cherry cultivar 'Schattenmorelle' was sequenced using Illumina NovaSeqTM and Oxford Nanopore long-read technologies, resulting in a ~629-Mbp pseudomolecule reference genome. The genome could be separated into two subgenomes, with subgenome PceS_a originating from P. avium and subgenome PceS_f originating from P. fruticosa. The genome also showed size reduction compared to ancestral species and traces of homoeologous sequence exchanges throughout. Comparative analysis confirmed that the genome of sour cherry is segmental allotetraploid and evolved very recently in the past.

SELECTION OF CITATIONS
SEARCH DETAIL
...