Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 263(Pt 2): 129989, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354916

ABSTRACT

In this study, the synthesis and experimental theoretical evaluation of a new chitosan/alginate/hydrozyapatite nanocomposite doped with Mn2 and Fe2O3 for Cr removal was reported. The physicochemical properties of the obtained materials were analyzed using the following methods: SEM-EDX, XRD, FTIR, XPS, pH drift measurements, and thermal analysis. The adsorption properties were estimated based on equilibrium and adsorption kinetics measurements. The Langmuir, Freundlich and Temkin isotherms were applied to analyze the equilibrium data. The thermodynamic analysis of adsorption isotherms was performed. A number of equations and kinetic models were used to describe the adsorption rate data, including pseudo-first (PFOE) and pseudo-second (PSOE) order kinetic equations. The obtained test results show that the synthesized biomaterial, compared to pure chitosan, is characterized by greater resistance to high temperatures. Moreover, this biomaterial had excellent adsorption properties. For the adsorption of Cr (VI), the equilibrium state was reached after 120 min, and the sorption capacity was 455.9 mg/g. In addition, DFT calculations and NCI analyses were performed to get more light on the adsorption mechanism of Cr (VI) on the prepared biocomposite.


Subject(s)
Chitosan , Nanocomposites , Water Pollutants, Chemical , Water Purification , Oxides , Wastewater , Chitosan/chemistry , Chromium/chemistry , Adsorption , Alginates/chemistry , Ferric Compounds/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Kinetics , Biocompatible Materials , Nanocomposites/chemistry , Hydrogen-Ion Concentration
2.
J Basic Clin Physiol Pharmacol ; 33(6): 779-787, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-34856088

ABSTRACT

OBJECTIVES: At present, diabetes is one of the leading causes of mortality across the world. It was hypothesized that muscle mass could have a significant influence on blood glucose level and this corelation if established successfully could pave way for novel treatment modalities for type 2 diabetes mellitus (T2DM). In the present study, the association between muscle mass and blood glucose level was examined in a healthy population who was not having T2DM at baseline and was undergoing a regular course of exercise. METHODS: The clinical study was performed involving 53 healthy male populations between 10 and 60 years of age. The participants were sampled in accordance with the quantitative experimental study design, using nonprobability sampling techniques. The independent variable measured among the subjects included muscle mass and blood glucose level, using bioelectrical impedance and a simple glucometer respectively. Subgroup analysis amongst different substantial parameters including body mass index (BMI), myostatin inhibitor usage, and age factor that could affect the muscle mass and glucose level correlation were also studied simultaneously. RESULTS: The study findings demonstrated a negative correlation between muscle mass and glucose utilization levels. There was a significant difference in the mean muscle mass of the participants which was 36.2453, and the mean glucose utilization level which was 15.1493%. Pearson correlation between the muscle mass and percentage of glucose utilization of the participants indicated a significant difference (since p-value <0.05) between these two studied parameters. CONCLUSIONS: The study finding suggests an inverse association of the skeletal muscle mass with blood glucose level which encourages the implication of muscle-building exercises as the preventive measure for T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Male , Diabetes Mellitus, Type 2/epidemiology , Blood Glucose/analysis , Body Mass Index , Muscle, Skeletal , Glucose
3.
Medicina (Kaunas) ; 59(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36676721

ABSTRACT

Background and Objectives: Obesity is a major health concern worldwide. Many studies emphasize the important role of brain-derived neurotrophic factor (BDNF) in regulating appetite and body weight. We aimed to investigate the association between BDNF protein serum levels and body mass index (BMI). Materials and Methods: We conducted a cross-sectional study among 108 healthy adult participants divided into six categories depending on their body mass index (BMI). The ages of the participants ranged between 21 to 45 years. The BDNF serum level was measured using the enzyme-linked immunosorbent assay (ELISA) technique. Results: A Kruskal−Wallis test showed a significant difference in BDNF between the different BMI categories, χ2(2) = 24.201, p < 0.001. Our data also showed that BDNF levels were significantly lower in people with obesity classes II and III than those of normal weight (p < 0.05). The Spearman rank correlation test was statistically significant with negative correlations between the BMI and BDNF (r) = −0.478, (p < 0.01). Moreover, we observed a negative dose-dependent relationship pattern between BMI categories and the levels of circulating BDNF protein. Conclusions: In this study, our data support the hypothesis that low serum levels of BDNF are associated with high BMI and obesity in Saudi adults.


Subject(s)
Brain-Derived Neurotrophic Factor , Obesity , Adult , Humans , Young Adult , Middle Aged , Body Mass Index , Cross-Sectional Studies , Body Weight
SELECTION OF CITATIONS
SEARCH DETAIL
...