Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(26): 17908-17916, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38889309

ABSTRACT

To fully harness the potential of abundant metal coordination complex photosensitizers, a detailed understanding of the molecular properties that dictate and control the electronic excited-state population dynamics initiated by light absorption is critical. In the absence of detectable luminescence, optical transient absorption (TA) spectroscopy is the most widely employed method for interpreting electron redistribution in such excited states, particularly for those with a charge-transfer character. The assignment of excited-state TA spectral features often relies on spectroelectrochemical measurements, where the transient absorption spectrum generated by a metal-to-ligand charge-transfer (MLCT) electronic excited state, for instance, can be approximated using steady-state spectra generated by electrochemical ligand reduction and metal oxidation and accounting for the loss of absorptions by the electronic ground state. However, the reliability of this approach can be clouded when multiple electronic configurations have similar optical signatures. Using a case study of Fe(II) complexes supported by benzannulated diarylamido ligands, we highlight an example of such an ambiguity and show how time-resolved X-ray emission spectroscopy (XES) measurements can reliably assign excited states from the perspective of the metal, particularly in conjunction with accurate synthetic models of ligand-field electronic excited states, leading to a reinterpretation of the long-lived excited state as a ligand-field metal-centered quintet state. A detailed analysis of the XES data on the long-lived excited state is presented, along with a discussion of the ultrafast dynamics following the photoexcitation of low-spin Fe(II)-Namido complexes using a high-spin ground-state analogue as a spectral model for the 5T2 excited state.

2.
ACS Nano ; 18(24): 15468-15476, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38833689

ABSTRACT

Spin transition (ST) materials are attractive for developing photoswitchable devices, but their slow material transformations limit device applications. Size reduction could enable faster switching, but the photoinduced dynamics at the nanoscale remains poorly understood. Here, we report a femtosecond optical pump multimodal X-ray probe study of polymeric nanorods. Simultaneously tracking the ST order parameter with X-ray emission spectroscopy and structure with X-ray diffraction, we observe photodoping of the low-spin-lattice within ∼150 fs. Above a ∼16% photodoping threshold, the transition to the high-spin phase occurs following an incubation period assigned to vibrational energy redistribution within the nanorods activating the molecular spin switching. Above ∼60% photodoping, the incubation period disappears, and the transition completes within ∼50 ps, preceded by the elastic nanorod expansion in response to the photodoping. These results support the feasibility of ST material-based GHz optical switching applications.

3.
Molecules ; 29(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792184

ABSTRACT

The ability to study chemical dynamics on ultrafast timescales has greatly advanced with the introduction of X-ray free electron lasers (XFELs) providing short pulses of intense X-rays tailored to probe atomic structure and electronic configuration. Fully exploiting the full potential of XFELs requires specialized experimental endstations along with the development of techniques and methods to successfully carry out experiments. The liquid jet endstation (LJE) at the Linac Coherent Light Source (LCLS) has been developed to study photochemistry and biochemistry in solution systems using a combination of X-ray solution scattering (XSS), X-ray absorption spectroscopy (XAS), and X-ray emission spectroscopy (XES). The pump-probe setup utilizes an optical laser to excite the sample, which is subsequently probed by a hard X-ray pulse to resolve structural and electronic dynamics at their intrinsic femtosecond timescales. The LJE ensures reliable sample delivery to the X-ray interaction point via various liquid jets, enabling rapid replenishment of thin samples with millimolar concentrations and low sample volumes at the 120 Hz repetition rate of the LCLS beam. This paper provides a detailed description of the LJE design and of the techniques it enables, with an emphasis on the diagnostics required for real-time monitoring of the liquid jet and on the spatiotemporal overlap methods used to optimize the signal. Additionally, various scientific examples are discussed, highlighting the versatility of the LJE.

4.
J Phys Chem B ; 128(6): 1428-1437, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38301132

ABSTRACT

Polarized time-resolved X-ray absorption spectroscopy at the Co K-edge is used to probe the excited-state dynamics and photolysis of base-off methylcobalamin and the excited-state structure of base-off adenosylcobalamin. For both molecules, the final excited-state minimum shows evidence for an expansion of the cavity around the Co ion by ca. 0.04 to 0.05 Å. The 5-coordinate base-off cob(II)alamin that is formed following photodissociation has a structure similar to that of the 5-coordinate base-on cob(II)alamin, with a ring expansion of 0.03 to 0.04 Å and a contraction of the lower axial bond length relative to that in the 6-coordinate ground state. These data provide insights into the role of the lower axial ligand in modulating the reactivity of B12 coenzymes.


Subject(s)
Coenzymes , Vitamin B 12 , X-Ray Absorption Spectroscopy , Vitamin B 12/chemistry , Photolysis
6.
J Am Chem Soc ; 145(46): 25120-25133, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37939223

ABSTRACT

The P450 enzyme CYP121 from Mycobacterium tuberculosis catalyzes a carbon-carbon (C-C) bond coupling cyclization of the dityrosine substrate containing a diketopiperazine ring, cyclo(l-tyrosine-l-tyrosine) (cYY). An unusual high-spin (S = 5/2) ferric intermediate maximizes its population in less than 5 ms in the rapid freeze-quenching study of CYP121 during the shunt reaction with peracetic acid or hydrogen peroxide in acetic acid solution. We show that this intermediate can also be observed in the crystalline state by EPR spectroscopy. By developing an on-demand-rapid-mixing method for time-resolved serial femtosecond crystallography with X-ray free-electron laser (tr-SFX-XFEL) technology covering the millisecond time domain and without freezing, we structurally monitored the reaction in situ at room temperature. After a 200 ms peracetic acid reaction with the cocrystallized enzyme-substrate microcrystal slurry, a ferric-hydroperoxo intermediate is observed, and its structure is determined at 1.85 Å resolution. The structure shows a hydroperoxyl ligand between the heme and the native substrate, cYY. The oxygen atoms of the hydroperoxo are 2.5 and 3.2 Å from the iron ion. The end-on binding ligand adopts a near-side-on geometry and is weakly associated with the iron ion, causing the unusual high-spin state. This compound 0 intermediate, spectroscopically and structurally observed during the catalytic shunt pathway, reveals a unique binding mode that deviates from the end-on compound 0 intermediates in other heme enzymes. The hydroperoxyl ligand is only 2.9 Å from the bound cYY, suggesting an active oxidant role of the intermediate for direct substrate oxidation in the nonhydroxylation C-C bond coupling chemistry.


Subject(s)
Peracetic Acid , Peroxides , Ligands , Cytochrome P-450 Enzyme System/metabolism , Iron , Heme/chemistry , Tyrosine , Carbon
7.
Pure Appl Chem ; 95(8): 891-897, 2023 Aug.
Article in English | MEDLINE | ID: mdl-38013689

ABSTRACT

X-ray crystallography and X-ray spectroscopy using X-ray free electron lasers plays an important role in understanding the interplay of structural changes in the protein and the chemical changes at the metal active site of metalloenzymes through their catalytic cycles. As a part of such an effort, we report here our recent development of methods for X-ray absorption spectroscopy (XAS) at XFELs to study dilute biological samples, available in limited volumes. Our prime target is Photosystem II (PS II), a multi subunit membrane protein complex, that catalyzes the light-driven water oxidation reaction at the Mn4CaO5 cluster. This is an ideal system to investigate how to control multi-electron/proton chemistry, using the flexibility of metal redox states, in coordination with the protein and the water network. We describe the method that we have developed to collect XAS data using PS II samples with a Mn concentration of <1 mM, using a drop-on-demand sample delivery method.

8.
Sci Adv ; 9(42): eadi6153, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37862409

ABSTRACT

The spin state of Fe can alter the key physical properties of silicate melts, affecting the early differentiation and the dynamic stability of the melts in the deep rocky planets. The low-spin state of Fe can increase the affinity of Fe for the melt over the solid phases and the electrical conductivity of melt at high pressures. However, the spin state of Fe has never been measured in dense silicate melts due to experimental challenges. We report detection of dominantly low-spin Fe in dynamically compressed olivine melt at 150 to 256 gigapascals and 3000 to 6000 kelvin using laser-driven shock wave compression combined with femtosecond x-ray diffraction and x-ray emission spectroscopy using an x-ray free electron laser. The observation of dominantly low-spin Fe supports gravitationally stable melt in the deep mantle and generation of a dynamo from the silicate melt portion of rocky planets.

9.
Struct Dyn ; 10(5): 054304, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37901682

ABSTRACT

We present a dedicated end-station for solution phase high repetition rate (MHz) picosecond hard x-ray spectroscopy at beamline 15-2 of the Stanford Synchrotron Radiation Lightsource. A high-power ultrafast ytterbium-doped fiber laser is used to photoexcite the samples at a repetition rate of 640 kHz, while the data acquisition operates at the 1.28 MHz repetition rate of the storage ring recording data in an alternating on-off mode. The time-resolved x-ray measurements are enabled via gating the x-ray detectors with the 20 mA/70 ps camshaft bunch of SPEAR3, a mode available during the routine operations of the Stanford Synchrotron Radiation Lightsource. As a benchmark study, aiming to demonstrate the advantageous capabilities of this end-station, we have conducted picosecond Fe K-edge x-ray absorption spectroscopy on aqueous [FeII(phen)3]2+, a prototypical spin crossover complex that undergoes light-induced excited spin state trapping forming an electronic excited state with a 0.6-0.7 ns lifetime. In addition, we report transient Fe Kß main line and valence-to-core x-ray emission spectra, showing a unique detection sensitivity and an excellent agreement with model spectra and density functional theory calculations, respectively. Notably, the achieved signal-to-noise ratio, the overall performance, and the routine availability of the developed end-station have enabled a systematic time-resolved science program using the monochromatic beam at the Stanford Synchrotron Radiation Lightsource.

10.
Science ; 382(6666): 109-113, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37797025

ABSTRACT

Aerobic ribonucleotide reductases (RNRs) initiate synthesis of DNA building blocks by generating a free radical within the R2 subunit; the radical is subsequently shuttled to the catalytic R1 subunit through proton-coupled electron transfer (PCET). We present a high-resolution room temperature structure of the class Ie R2 protein radical captured by x-ray free electron laser serial femtosecond crystallography. The structure reveals conformational reorganization to shield the radical and connect it to the translocation path, with structural changes propagating to the surface where the protein interacts with the catalytic R1 subunit. Restructuring of the hydrogen bond network, including a notably short O-O interaction of 2.41 angstroms, likely tunes and gates the radical during PCET. These structural results help explain radical handling and mobilization in RNR and have general implications for radical transfer in proteins.


Subject(s)
Bacterial Proteins , Entomoplasmataceae , Ribonucleotide Reductases , Electron Transport , Protons , Ribonucleotide Reductases/chemistry , Crystallography, X-Ray/methods , Entomoplasmataceae/enzymology , Catalytic Domain , Bacterial Proteins/chemistry
11.
IUCrJ ; 10(Pt 6): 642-655, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37870936

ABSTRACT

The water oxidation reaction in photosystem II (PS II) produces most of the molecular oxygen in the atmosphere, which sustains life on Earth, and in this process releases four electrons and four protons that drive the downstream process of CO2 fixation in the photosynthetic apparatus. The catalytic center of PS II is an oxygen-bridged Mn4Ca complex (Mn4CaO5) which is progressively oxidized upon the absorption of light by the chlorophyll of the PS II reaction center, and the accumulation of four oxidative equivalents in the catalytic center results in the oxidation of two waters to dioxygen in the last step. The recent emergence of X-ray free-electron lasers (XFELs) with intense femtosecond X-ray pulses has opened up opportunities to visualize this reaction in PS II as it proceeds through the catalytic cycle. In this review, we summarize our recent studies of the catalytic reaction in PS II by following the structural changes along the reaction pathway via room-temperature X-ray crystallography using XFELs. The evolution of the electron density changes at the Mn complex reveals notable structural changes, including the insertion of OX from a new water molecule, which disappears on completion of the reaction, implicating it in the O-O bond formation reaction. We were also able to follow the structural dynamics of the protein coordinating with the catalytic complex and of channels within the protein that are important for substrate and product transport, revealing well orchestrated conformational changes in response to the electronic changes at the Mn4Ca cluster.

12.
J Am Chem Soc ; 145(38): 20733-20738, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37610249

ABSTRACT

Photolytic delivery of nitric oxide and nitroxide has substantial biomedical and phototherapeutic applications. Here, we utilized hard X-ray spectroscopic methods to identify key geometric and electronic structural features of two photolabile {FeNO}6 complexes where the compounds differ in the presence of a pendant thiol in [Fe(NO)(TMSPS2)(TMSPS2H)] and thioether in [Fe(NO)(TMSPS2)(TMSPS2CH3)] with the former complex being the only transition metal system to photolytically generate HNO. Fe Kß XES identifies the photoreactant systems as essentially Fe(II)-NO+, while valence-to-core XES extracts a NO oxidation state of +0.5. Finally, the pre-edge of the Fe high-energy-resolution fluorescence detected (HERFD) XAS spectra is shown to be acutely sensitive to perturbation of the Fe-NO covalency enhanced by the 3d-4p orbital mixing dipole intensity contribution. Collectively, this X-ray spectroscopic approach enables future time-resolved insights in these systems and extensions to other challenging redox noninnocent {FeNO}x systems.

13.
Inorg Chem ; 62(25): 9904-9911, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37314410

ABSTRACT

The electronic structure and dynamics of ruthenium complexes are widely studied given their use in catalytic and light-harvesting materials. Here we investigate three model Ru complexes, [RuIII(NH3)6]3+, [RuII(bpy)3]2+, and [RuII(CN)6]4-, with L3-edge 2p3d resonant inelastic X-ray scattering (RIXS) to probe unoccupied 4d valence orbitals and occupied 3d orbitals and to gain insight into the interactions between these levels. The 2p3d RIXS maps contain a higher level of spectral information than the L3 X-ray absorption near edge structure (XANES). This study provides a direct measure of the 3d spin-orbit splittings of 4.3, 4.0, and 4.1 eV between the 3d5/2 and 3d3/2 orbitals of the [RuIII(NH3)6]3+, [RuII(bpy)3]2+, and [RuII(CN)6]4- complexes, respectively.

14.
J Am Chem Soc ; 145(25): 14070-14086, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37327324

ABSTRACT

Femtosecond time-resolved X-ray absorption (XANES) at the Co K-edge, X-ray emission (XES) in the Co Kß and valence-to-core regions, and broadband UV-vis transient absorption are combined to probe the femtosecond to picosecond sequential atomic and electronic dynamics following photoexcitation of two vitamin B12 compounds, hydroxocobalamin and aquocobalamin. Polarized XANES difference spectra allow identification of sequential structural evolution involving first the equatorial and then the axial ligands, with the latter showing rapid coherent bond elongation to the outer turning point of the excited state potential followed by recoil to a relaxed excited state structure. Time-resolved XES, especially in the valence-to-core region, along with polarized optical transient absorption suggests that the recoil results in the formation of a metal-centered excited state with a lifetime of 2-5 ps. This combination of methods provides a uniquely powerful tool to probe the electronic and structural dynamics of photoactive transition-metal complexes and will be applicable to a wide variety of systems.

15.
Nat Commun ; 14(1): 3384, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37291130

ABSTRACT

Femtosecond pump-probe spectroscopy using ultrafast optical and infrared pulses has become an essential tool to discover and understand complex electronic and structural dynamics in solvated molecular, biological, and material systems. Here we report the experimental realization of an ultrafast two-color X-ray pump X-ray probe transient absorption experiment performed in solution. A 10 fs X-ray pump pulse creates a localized excitation by removing a 1s electron from an Fe atom in solvated ferro- and ferricyanide complexes. Following the ensuing Auger-Meitner cascade, the second X-ray pulse probes the Fe 1s → 3p transitions in resultant novel core-excited electronic states. Careful comparison of the experimental spectra with theory, extracts +2 eV shifts in transition energies per valence hole, providing insight into correlated interactions of valence 3d with 3p and deeper-lying electrons. Such information is essential for accurate modeling and predictive synthesis of transition metal complexes relevant for applications ranging from catalysis to information storage technology. This study demonstrates the experimental realization of the scientific opportunities possible with the continued development of multicolor multi-pulse X-ray spectroscopy to study electronic correlations in complex condensed phase systems.


Subject(s)
Coordination Complexes , X-Ray Absorption Spectroscopy , X-Rays
16.
Nature ; 617(7961): 629-636, 2023 May.
Article in English | MEDLINE | ID: mdl-37138085

ABSTRACT

In natural photosynthesis, the light-driven splitting of water into electrons, protons and molecular oxygen forms the first step of the solar-to-chemical energy conversion process. The reaction takes place in photosystem II, where the Mn4CaO5 cluster first stores four oxidizing equivalents, the S0 to S4 intermediate states in the Kok cycle, sequentially generated by photochemical charge separations in the reaction center and then catalyzes the O-O bond formation chemistry1-3. Here, we report room temperature snapshots by serial femtosecond X-ray crystallography to provide structural insights into the final reaction step of Kok's photosynthetic water oxidation cycle, the S3→[S4]→S0 transition where O2 is formed and Kok's water oxidation clock is reset. Our data reveal a complex sequence of events, which occur over micro- to milliseconds, comprising changes at the Mn4CaO5 cluster, its ligands and water pathways as well as controlled proton release through the hydrogen-bonding network of the Cl1 channel. Importantly, the extra O atom Ox, which was introduced as a bridging ligand between Ca and Mn1 during the S2→S3 transition4-6, disappears or relocates in parallel with Yz reduction starting at approximately 700 µs after the third flash. The onset of O2 evolution, as indicated by the shortening of the Mn1-Mn4 distance, occurs at around 1,200 µs, signifying the presence of a reduced intermediate, possibly a bound peroxide.


Subject(s)
Oxygen , Photosynthesis , Photosystem II Protein Complex , Oxidation-Reduction , Oxygen/chemistry , Oxygen/metabolism , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Protons , Water/chemistry , Water/metabolism , Manganese/chemistry , Manganese/metabolism , Calcium/chemistry , Calcium/metabolism , Peroxides/metabolism
17.
Nat Commun ; 14(1): 2443, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37147295

ABSTRACT

Reliably identifying short-lived chemical reaction intermediates is crucial to elucidate reaction mechanisms but becomes particularly challenging when multiple transient species occur simultaneously. Here, we report a femtosecond x-ray emission spectroscopy and scattering study of the aqueous ferricyanide photochemistry, utilizing the combined Fe Kß main and valence-to-core emission lines. Following UV-excitation, we observe a ligand-to-metal charge transfer excited state that decays within 0.5 ps. On this timescale, we also detect a hitherto unobserved short-lived species that we assign to a ferric penta-coordinate intermediate of the photo-aquation reaction. We provide evidence that bond photolysis occurs from reactive metal-centered excited states that are populated through relaxation of the charge transfer excited state. Beyond illuminating the elusive ferricyanide photochemistry, these results show how current limitations of Kß main line analysis in assigning ultrafast reaction intermediates can be circumvented by simultaneously using the valence-to-core spectral range.

19.
FEBS Lett ; 597(1): 30-37, 2023 01.
Article in English | MEDLINE | ID: mdl-36310373

ABSTRACT

Ever since the discovery that Mn was required for oxygen evolution in plants by Pirson in 1937 and the period-four oscillation in flash-induced oxygen evolution by Joliot and Kok in the 1970s, understanding of this process has advanced enormously using state-of-the-art methods. The most recent in this series of innovative techniques was the introduction of X-ray free-electron lasers (XFELs) a decade ago, which led to another quantum leap in the understanding in this field, by enabling operando X-ray structural and X-ray spectroscopy studies at room temperature. This review summarizes the current understanding of the structure of Photosystem II (PS II) and its catalytic centre, the Mn4 CaO5 complex, in the intermediate Si (i = 0-4)-states of the Kok cycle, obtained using XFELs.


Subject(s)
Photosynthesis , Water , Water/chemistry , Oxidation-Reduction , Photosystem II Protein Complex/metabolism , Lasers , Oxygen/chemistry
20.
Optica ; 10(4): 513-519, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-38239819

ABSTRACT

X-ray free-electron lasers (XFELs) provide intense pulses that can generate stimulated X-ray emission, a phenomenon that has been observed and studied in materials ranging from neon to copper. Two schemes have been employed: amplified spontaneous emission (ASE) and seeded stimulated emission (SSE), where a second color XFEL pulse provides the seed. Both phenomena are currently explored for coherent X-ray laser sources and spectroscopy. Here, we report measurements of ASE and SSE of the 5.9 keV Mn Kα1 fluorescence line from a 3.9 molar NaMnO4 solution, pumped with 7 femtosecond FWHM XFEL pulses at 6.6 keV. We observed ASE at a pump pulse intensity of 1.7 × 1019 W/cm2, consistent with earlier findings. We observed SSE at dramatically reduced pump pulse intensities down to 1.1 × 1017 W/cm2. These intensities are well within the range of many existing XFEL instruments, which supports the experimental feasibility of SSE as a tool to generate coherent X-ray pulses, spectroscopic studies of transition metal complexes, and other applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...