Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Cancer Lett ; 590: 216843, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38579893

ABSTRACT

Recurrent chemotherapy-induced senescence and resistance are attributed to the polyploidization of cancer cells that involve genomic instability and poor prognosis due to their unique form of cellular plasticity. Autophagy, a pre-dominant cell survival mechanism, is crucial during carcinogenesis and chemotherapeutic stress, favouring polyploidization. The selective autophagic degradation of essential proteins associated with cell cycle progression checkpoints deregulate mitosis fidelity and genomic integrity, imparting polyploidization of cancer cells. In connection with cytokinesis failure and endoreduplication, autophagy promotes the formation, maintenance, and generation of the progeny of polyploid giant cancer cells. The polyploid cancer cells embark on autophagy-guarded elevation in the expression of stem cell markers, along with triggered epithelial and mesenchymal transition and senescence. The senescent polyploid escapers represent a high autophagic index than the polyploid progeny, suggesting regaining autophagy induction and subsequent autophagic degradation, which is essential for escaping from senescence/polyploidy, leading to a higher proliferative phenotypic progeny. This review documents the various causes of polyploidy and its consequences in cancer with relevance to autophagy modulation and its targeting for therapeutic intervention as a novel therapeutic strategy for personalized and precision medicine.


Subject(s)
Autophagy , Cellular Senescence , Neoplasms , Neoplastic Stem Cells , Polyploidy , Humans , Cellular Senescence/drug effects , Neoplasms/pathology , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Animals , Epithelial-Mesenchymal Transition
2.
Appl Immunohistochem Mol Morphol ; 32(4): 189-199, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38426376

ABSTRACT

The use of chemotherapy has improved the overall treatment of breast cancer, which is frequently administered in the form of neoadjuvant chemotherapy (NAC). Apoptosis is an established cell stress response to NAC in preclinical models; however, there is limited understanding of its role in clinical cancer, specifically, its contribution to favorable pathologic responses in breast cancer therapy. Here, we aimed to characterize the change in protein expression of 3 apoptosis-associated biomarkers, namely, BCL-X L , MCL-1, and BAX in breast cancer in response to NAC. For this, we utilized a set of 68 matched invasive breast cancer FFPE samples that were collected before (pre) and after (post) the exposure to NAC therapy that were characterized by incomplete pathologic response. Immunohistochemistry (IHC) analysis suggested that most of the samples show a decrease in the protein expression of all 3 markers following exposure to NAC as 90%, 69%, and 76% of the matched samples exhibited a decrease in expression for BCL-X L , MCL-1, and BAX, respectively. The median H-score of BCL-X L post-NAC was 150/300 compared with 225/300 pre-NAC ( P value <0.0001). The median H-score of MCL-1 declined from 200 pre-NAC to 160 post-NAC ( P value <0.0001). The median H-score of BAX protein expression decreased from 260 pre-NAC to 190 post-NAC ( P value <0.0001). There was no statistically significant association between the expression of these markers and stage, grade, and hormone receptor profiling (luminal status). Collectively, our data indicate that the expression of apoptosis regulatory proteins changes following exposure to NAC in breast cancer tissue, developing a partial pathologic response.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , bcl-2-Associated X Protein/therapeutic use , Myeloid Cell Leukemia Sequence 1 Protein/therapeutic use , Neoadjuvant Therapy , Immunohistochemistry , Chemotherapy, Adjuvant
3.
Saudi Pharm J ; 32(3): 101961, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38313820

ABSTRACT

Background: Although national efforts are underway to document the genomic variability of the Saudi population relative to other populations, such variability remains largely unexplored. Genetic variability is known to impact the fate of cells and increase or decrease the risk of a variety of complex diseases including cancer forms. Therefore, the identification of variants associated with cancer susceptibility in Saudi population may protect individuals from cancer or aid in patient-tailored therapies. The endo-lysosomal ion transport genes responsible for cationic ion homeostasis within the cell. We screened 703 single-nucleotide polymorphisms (SNPs) of the endo-lysosomal ion transporter genes in the Saudi population and identified cancer-associated variants that have been reported in other populations. Methods: Utilizing previously derived local data of Whole-Exome Sequencing (WES), we examined SNPs of TPCN1, TPCN2, P2RX4, TRPM7, TRPV4, TRPV4, and TRPV6 genes. The SNPs were identified for those genes by our in-house database. We predicted the pathogenicity of these variants using in silico tools CADD, Polyphen-2, SIFT, PrimateAI, and FATHMM-XF. Then, we validated our findings by exploring the genetics database (VarSome, dbSNP NCB, OMIM, ClinVar, Ensembl, and GWAS Catalog) to further link cancer risk. Results: The WES database yielded 703 SNPs found in TPCN2, P2RX4, TRPM7, TRPV4, and TRPV6 genes in 1,144 subjects. The number of variants that were found to be common in our population was 150 SNPs. We identified 13 coding-region non-synonymous variants of the endo-lysosomal genes that were most common with a minor allele frequency (MAF) of ≥ 1 %. Twelve of these variants are rs2376558, rs3750965, rs61746574, rs35264875, rs3829241, rs72928978, rs25644, rs8042919, rs17881456, rs4987682, rs4987667, and rs4987657 that were classified as cancer-associated genes. Conclusion: Our study highlighted cancer-associated SNPs in the endo-lysosomal genes among Saudi individuals. The allelic frequencies on polymorphic variants confer susceptibility to complex diseases that are comparable to other populations. There is currently insufficient clinical data supporting the link between these SNPs and cancer risk in the Saudi population. Our data argues for initiating future cohort studies in which individuals with the identified SNPs are monitored and assessed for their likelihood of developing malignancies and therapy outcomes.

4.
Immunol Cell Biol ; 102(4): 240-255, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38265162

ABSTRACT

Therapy-induced senescence (TIS) is a primary response to chemotherapy, contributing to untoward treatment outcomes such as evasion of immunosurveillance. Despite the established role of the complement system in the immune response to cancer, the role of complement in mediating the immune response against senescent tumor cells remains poorly understood. To explore this relationship, we exposed lung adenocarcinoma (A549), breast adenocarcinoma (MCF7) and pancreatic carcinoma (Panc-1) cell lines to sublethal doses of either etoposide or doxorubicin to trigger TIS. Identification of TIS was based on morphological changes, upregulation of the senescence-associated ß-galactosidase, p21Cip1 induction and lamin B1 downregulation. Using immunofluorescence microscopy, quantitative PCR, ELISA of conditioned media and in silico analysis, we investigated complement activation, complement protein expression, C3 levels in the conditioned media of senescent cells and secreted complement proteins as part of the senescence-associated secretory phenotype (SASP), respectively. In cell lines undergoing TIS, complement-related changes included (i) activation of the terminal pathway, evidenced by the deposition of C5b-9 on senescent cells; (ii) an increase in the expression of CD59 and complement factor H and (iii) in A549 cells, an elevation in the expression of C3 with its secretion into the medium. In addition, increased C3 expression was observed in breast cancer samples expressing TIS hallmarks following exposure to neoadjuvant chemotherapy. In conclusion, TIS led to the activation of complement, upregulation of complement regulatory proteins and increased C3 expression. Complement appears to play a role in shaping the cancer microenvironment upon senescence induction.


Subject(s)
Doxorubicin , Neoplasms , Humans , Culture Media, Conditioned , Doxorubicin/pharmacology , Cell Line , Transcription Factors , Complement Activation , Complement System Proteins
5.
Neurotox Res ; 42(1): 10, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38294571

ABSTRACT

Therapy-Induced Senescence (TIS) is a form of senescence that is typically described in malignant cells in response to the exposure of cancer chemotherapy or radiation but can also be precipitated in non-malignant cells. TIS has been shown to contribute to the development of several cancer therapy-related adverse effects; however, evidence on its role in mediating chemotherapy-induced neurotoxicity, such as Chemotherapy-induced Peripheral Neuropathy (CIPN), is limited. We here show that cisplatin treatment over two cycles (cumulative dose of 23 mg/kg) provoked mechanical allodynia and thermal hyperalgesia in Sprague-Dawley rats. Isolation of dorsal root ganglia (DRG) from the cisplatin-treated rats demonstrated robust SA-ß-gal upregulation at both day 8 (after the first cycle) and day 18 (after the second cycle), decreased lmnb1 expression, increased expression of cdkn1a and cdkn2a, and of several factors of the Senescence-associated Secretory Phenotype (SASP) (Il6, Il1b, and mmp9). Moreover, single-cell calcium imaging of cultured DRGs revealed a significant increase in terms of the magnitude of KCl-evoked calcium responses in cisplatin-treated rats compared to vehicle-treated rats. No significant change was observed in terms of the magnitude of capsaicin-evoked calcium responses in cisplatin-treated rats compared to vehicle-treated rats but with decreased area under the curve of the responses in cisplatin-treated rats. Further evidence to support the contribution of TIS to therapy adverse effects is required but should encourage the use of senescence-modulating agents (senotherapeutics) as novel palliative approaches to mitigate chemotherapy-induced neurotoxicity.


Subject(s)
Antineoplastic Agents , Neoplasms , Rats , Animals , Calcium , Cisplatin/toxicity , Nociception , Rats, Sprague-Dawley , Hyperalgesia , Antineoplastic Agents/toxicity
6.
Cancer Cell Int ; 23(1): 325, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38104117

ABSTRACT

BACKGROUND: Melanoma, a severe form of skin cancer, poses significant health risks due to its aggressive nature and potential for metastasis. The role of two-pore channel 2 (TPC2) in the development and progression of melanoma remains poorly understood. This study aims to investigate the impact of TPC2 knockout (KO) on melanoma-derived tumors, focusing on tumour growth and related toxicity in the organism. METHODS: The study utilized CHL-1 and B16 melanoma cell lines with TPC2 KO to assess the changes in proliferation dynamics. Methods included real-time monitoring of cell proliferation using the xCELLigence system, in vivo tumour growth assays in mice, histopathological analyses, inflammation marker assessment, and quantitative PCR (qPCR) for gene expression analysis RESULTS: TPC2 KO was found to significantly alter the proliferation dynamics of CHL-1 and B16 melanoma cells. The in vivo studies demonstrated reduced tumor growth in TPC2 KO cell-derived tumors. However, a notable increase in tumor-related toxicity in affected organs, such as the liver and spleen, was observed, indicating a complex role of TPC2 in melanoma pathology. CONCLUSIONS: The loss of TPC2 function in melanoma cells leads to reduced tumour growth but exacerbates tumour-related toxicity in the organism. These findings highlight the dual role of TPC2 in melanoma progression and its potential as a therapeutic target. Further research is needed to fully understand the mechanisms underlying these effects and to explore TPC2 as a treatment target in melanoma.

7.
Front Vet Sci ; 10: 1227908, 2023.
Article in English | MEDLINE | ID: mdl-38155762

ABSTRACT

Ticks are important ectoparasites that transmit various pathogens causing morbidity and mortality in humans and animals. Saudi Arabia faces several challenges that can contribute to the emergence and spread of antimicrobial resistance (AMR) bacteria. These challenges require collaborative efforts to successfully achieve significant control of AMR in the country. The present study aims to isolate bacteria from camels' tick Hyalomma dromedarii in Al-Jouf province to identify and determine these isolates' antimicrobial susceptibilities. Forty-nine ticks were collected from dromedary camels and morphologically classified as H. dromedarii. Ticks were then homogenized and plated individually, which resulted in the isolation of 55 bacteria. The results showed that the bacterial isolates belong to 20 different species. About 71% (n = 39) of the total isolates were identified as Gram-positive bacteria comprised of 11 different species, while 29% (n = 16) of the total isolates were Gram-negative bacteria comprised of 9 different species. The most prevalent isolate within the total samples was Staphylococcus lentus (22.45%, 11/49), followed by Staphylococcus pseudintermedius (18.37%, 9/49) and Sphingomonas paucimobilis (16.33% 8/49). The antimicrobial susceptibility profile of Gram-positive bacteria showed that 100% (n = 31) were resistant to benzylpenicillin; 90.3% (n = 28) were resistant to oxacillin; 58.1% (n = 18) were resistant to clindamycin; 48.4% (n = 15) were resistant to vancomycin. In addition, 32.3% (n = 10) were resistant to trimethoprim/sulfamethoxazole and rifampicin; 25.8% (n = 8) were resistant to erythromycin; 16.1% (n = 5) were resistant to teicoplanin; 6.5% (n = 2) were resistant to tetracycline. All Gram-positive bacteria were 100% susceptible to linezolid, gentamicin, tobramycin, levofloxacin, moxifloxacin, tigecycline, and nitrofurantoin. In antimicrobial susceptibility tests for the Gram-negative bacteria, 57.14% (n = 8) of the identified bacteria were resistant to ampicillin, whereas 50% (n = 7) were resistant to cefoxitin and ceftazidime. About 28.57% (n = 4) of the Gram-negative bacteria were resistant to ceftriaxone, trimethoprim/sulfamethoxazole. In addition, 21.43% (n = 3) were resistant to amoxicillin/clavulanic acid and cephalothin; 14.29% (n = 2) were resistant to cefepime and nitrofurantoin; 7.14% (n = 1) were resistant to piperacillin/tazobactam and tigecycline. However, all Gram-negative bacteria were susceptible to other examined antimicrobials. This is the first study that investigates the role of the hard tick as a potential reservoir for AMR pathogens within our region.

8.
Biomedicines ; 11(11)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38002066

ABSTRACT

Despite significant advances in the treatment of triple-negative breast cancer, this disease continues to pose a clinical challenge, with many patients ultimately suffering from relapse. Tumor cells that recover after entering into a state of senescence after chemotherapy or radiation have been shown to develop a more aggressive phenotype, and to contribute to disease recurrence. By combining the PARP inhibitor (PARPi), talazoparib, with radiation, senescence was enhanced in 4T1 and MDA-MB-231 triple-negative breast cancer cell lines (based on SA-ß-gal upregulation, increased expression of CDKN1A and the senescence-associated secretory phenotype (SASP) marker, IL6). Subsequent treatment of the radiation- and talazoparib-induced senescent 4T1 and MDA-MB231 cells with navitoclax (ABT-263) resulted in significant apoptotic cell death. In immunocompetent tumor-bearing mice, navitoclax exerted a modest growth inhibitory effect when used alone, but dramatically interfered with the recovery of 4T1-derived tumors induced into senescence with ionizing radiation and talazoparib. These findings support the potential utility of a senolytic strategy in combination with the radiotherapy/PARPi combination to mitigate the risk of disease recurrence in triple-negative breast cancer.

9.
Biomedicines ; 11(9)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37760953

ABSTRACT

Four novel phosphanegold(I) complexes of the type [Au(PR3)(DMT)].PF6 (1-4) were synthesized from 3-Thiosemicarbano-butan-2-one oxime ligand (TBO) and precursors [Au(PR3)Cl], (where R = methyl (1), ethyl (2), tert-butyl (3), and phenyl (4)). The resulting complexes were characterized by elemental analyses and melting point as well as various spectroscopic techniques, including FTIR and (1H, 13C, and 31P) NMR spectroscopy. The spectroscopic data confirmed the coordination of TBO ligands to phosphanegold(I) moiety. The solution chemistry of complexes 1-4 indicated their stability in both dimethyl sulfoxide (DMSO) and a mixture of EtOH:H2O (1:1). In vitro cytotoxicity of the complexes was evaluated relative to cisplatin using an MTT assay against three different cancer cell lines: HCT116 (human colon cancer), MDA-MB-231 (human breast cancer), and B16 (murine skin cancer). Complexes 2, 3, and 4 exhibited significant cytotoxic effects against all tested cancer cell lines and showed significantly higher activity than cisplatin. To elucidate the mechanism underlying the cytotoxic effects of the phosphanegold(I) TBO complexes, various assays were employed, including mitochondrial membrane potential, ROS production, and gene expression analyses. The data obtained suggest that complex 2 exerts potent anticancer activity against breast cancer cells (MDA-MB-231) through the induction of oxidative stress, mitochondrial dysfunction, and apoptosis. Gene expression analyses showed an increase in the activity of the proapoptotic gene caspase-3 and a reduction in the activity of the antiapoptotic gene BCL-xL, which supported the findings that apoptosis had occurred.

10.
Sci Rep ; 13(1): 15903, 2023 09 23.
Article in English | MEDLINE | ID: mdl-37741850

ABSTRACT

Neoadjuvant chemotherapy (NAC) is a frequently utilized approach to treat locally advanced breast cancer, but, unfortunately, a subset of tumors fails to undergo complete pathological response. Apoptosis and therapy-induced senescence (TIS) are both cell stress mechanisms but their exact role in mediating the pathological response to NAC is not fully elucidated. We investigated the change in expression of PAMIP1, the gene encoding for the pro-apoptotic protein, NOXA, following NAC in two breast cancer gene datasets, and the change in NOXA protein expression in response to NAC in 55 matched patient samples (pre- and post-NAC). PAMIP1 expression significantly declined in post-NAC in the two sets, and in our cohort, 75% of the samples exhibited a downregulation in NOXA post-NAC. Matched samples that showed a decline in NOXA post-NAC were examined for TIS based on a signature of downregulated expression of Lamin-B1 and Ki-67 and increased p16INK4a, and the majority exhibited a decrease in Lamin B1 (66%) and Ki-67 (80%), and increased p16INK4a (49%). Since our cohort consisted of patients that did not develop complete pathological response, such findings have clinical implications on the role of TIS and NOXA downregulation in mediating suboptimal responses to the currently established NAC.


Subject(s)
Breast Neoplasms , Female , Humans , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cyclin-Dependent Kinase Inhibitor p16 , Ki-67 Antigen/metabolism , Neoadjuvant Therapy
11.
Hum Exp Toxicol ; 42: 9603271231188492, 2023.
Article in English | MEDLINE | ID: mdl-37431997

ABSTRACT

Dasatinib is an effective treatment for chronic myeloid leukemia. However, cases of idiosyncratic hepatotoxicity were reported. This study was conducted to investigate the chemopreventive effects of hydroxychloroquine against dasatinib-induced hepatotoxicity. Balb/c mice were randomly assigned into four groups; vehicle control (5% DMSO, i.p., n = 6), dasatinib (50 mg/kg; i.p., n = 6), hydroxychloroquine (10 mg/kg, i.p., n = 6), and hydroxychloroquine + dasatinib (10 mg/kg + 50 mg/kg; i.p., n = 6). Treatments were given once every 2 days for 14 days. Serum and histopathological assessments of liver architecture and fibrosis were performed using H&E, Masson's trichrome, and reticulin staining. The infiltration of lymphocytes was assessed using immunohistochemistry. The gene expression of antioxidant enzymes (CAT, SOD-2, GPX-1) was assessed using real-time quantitative PCR. Dasatinib showed a significant increase in liver injury biomarkers (AST and ALT) with higher lymphocytes infiltration (as indicated by CD3+, CD4+, CD8+, and CD20+ immunohistochemistry). Hepatic tissue of Dasatinib group exhibited significant downregulation in the gene expression of antioxidant enzymes (CAT, SOD-2, and GPX-1) compared to the control group. However, the combination of hydroxychloroquine with dasatinib showed a slight increase in AST and ALT. Also, hydroxychloroquine + dasatinib treated mice showed a significant reduction in lymphocytes infiltration as compared to dasatinib. The results showed that dasatinib induces an immune response leading to an increase in lymphocytes infiltration which promotes hepatocyte destruction and persistent liver injury. The results also suggest that hydroxychloroquine ameliorates dasatinib-induced hepatotoxicity via reduction in hepatic infiltration of T and B immune cells.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Hydroxychloroquine , Animals , Mice , Dasatinib/pharmacology , Dasatinib/therapeutic use , Hydroxychloroquine/therapeutic use , Antioxidants , Superoxide Dismutase
12.
Article in English | MEDLINE | ID: mdl-37188433

ABSTRACT

Rheumatoid arthritis (RA), an autoimmune disorder in which the immune system attacks healthy cells, is associated with elevated risk of lymphoma. Rituximab, a treatment for non-Hodgkin's lymphoma, has been approved as a treatment for RA. We studied the effects of rituximab on chromosomal stability in collagen-induced arthritis DBA/1J animal models. Micronucleus levels were increased in the mouse models, mainly due to chromosome loss, as detected by fluorescence in situ hybridization; rituximab-treated arthritic mice had significantly less micronucleus formation. Serum 8-hydroxydeoxyguanosine, a DNA oxidative stress marker, was increased in the mice models but reduced following rituximab administration.


Subject(s)
Aneugens , Arthritis, Rheumatoid , Mice , Animals , Rituximab/pharmacology , Mutagens , Mice, Inbred DBA , In Situ Hybridization, Fluorescence , Arthritis, Rheumatoid/drug therapy , Disease Models, Animal
13.
Cancer Chemother Pharmacol ; 91(4): 345-360, 2023 04.
Article in English | MEDLINE | ID: mdl-36964435

ABSTRACT

PURPOSE: Despite the beneficial effects of chemotherapy, therapy-induced senescence (TIS) manifests itself as an undesirable byproduct. Preclinical evidence suggests that tumor cells undergoing TIS can re-emerge as more aggressive divergents and contribute to recurrence, and thus, senolytics were proposed as adjuvant treatment to eliminate senescent tumor cells. However, the identification of TIS in clinical samples is essential for the optimal use of senolytics in cancer therapy. In this study, we aimed to detect and quantify TIS using matched breast cancer samples collected pre- and post-exposure to neoadjuvant chemotherapy (NAC). METHODS: Detection of TIS was based on the change in gene and protein expression levels of three senescence-associated markers (downregulation of Lamin B1 and Ki-67 and upregulation of p16INK4a). RESULTS: Our analysis revealed that 23 of 72 (31%) of tumors had a shift in the protein expression of the three markers after exposure to NAC suggestive of TIS. Gene expression sets of two independent NAC-treated breast cancer samples showed consistent changes in the expression levels of LMNB1, MKI67 and CDKN2A. CONCLUSIONS: Collectively, our study shows a more individualized approach to measure TIS hallmarks in matched breast cancer samples and provides an estimation of the extent of TIS in breast cancer clinically. Results from this work should be complemented with more comprehensive identification approaches of TIS in clinical samples in order to adopt a more careful implementation of senolytics in cancer treatment.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Neoadjuvant Therapy , Senotherapeutics , Cyclin-Dependent Kinase Inhibitor p16/genetics
14.
Front Aging Neurosci ; 14: 891593, 2022.
Article in English | MEDLINE | ID: mdl-36248001

ABSTRACT

Platinum-based chemotherapeutic treatment of cancer patients is associated with debilitating adverse effects. Several adverse effects have been well investigated, and can be managed satisfactorily, but chemotherapy-induced peripheral neuropathy (CIPN) remains poorly treated. Our primary aim in this study was to investigate the neuroprotective effect of the immunomodulatory drug rapamycin in the mitigation of cisplatin-induced neurotoxicity. Pain assays were performed in vivo to determine whether rapamycin would prevent or significantly decrease cisplatin-induced neurotoxicity in adult male Balb/c mice. Neuropathic pain induced by both chronic and acute exposure to cisplatin was measured by hot plate assay, cold plate assay, tail-flick test, and plantar test. Rapamycin co-treatment resulted in significant reduction in cisplatin-induced nociceptive-like symptoms. To understand the underlying mechanisms behind rapamycin-mediated neuroprotection, we investigated its effect on certain inflammatory mediators implicated in the propagation of chemotherapy-induced neurotoxicity. Interestingly, cisplatin was found to significantly increase peripheral IL-17A expression and CD8- T cells, which were remarkably reversed by the pre-treatment of mice with rapamycin. In addition, rapamycin reduced the cisplatin-induced neuronal apoptosis marked by decreased neuronal caspase-3 activity. The rapamycin neuroprotective effect was also associated with reversal of the changes in protein expression of p21Cip1, p53, and PUMA. Collectively, rapamycin alleviated some features of cisplatin-induced neurotoxicity in mice and can be further investigated for the treatment of cisplatin-induced peripheral neuropathy.

15.
Mutat Res ; 825: 111799, 2022.
Article in English | MEDLINE | ID: mdl-36108541

ABSTRACT

Rheumatoid arthritis (RA), which is driven by persistent activation of the immune system, primarily affects the joints. Several reports have estimated the risk of gonadal disruptions in arthritic patients, with potential attributable risk factors such as treatments with the disease-modifying antirheumatic drugs and the influence of the disease itself. The FDA approved rituximab, a therapy for non-Hodgkin's lymphoma, for management of RA in February 2006. However, the influence of repeated treatment with rituximab on gonadal function in RA has not been reported yet. Thus, the aim of the presents study is to evaluate whether repeated treatment with the clinically relevant dose of rituximab may change the gonadal disruptions in collagen-induced arthritis in male DBA/1 J mouse, a model of RA. Testicular disruptions, as determined by the sperm DNA strand breaks, spermatocyte chromosomal analysis and spermiogram examination have been conducted by the use of standard techniques. Additionally, we aimed to test whether the anti-rheumatic effect of rituximab also decreases the cellular oxidant-antioxidant imbalance in arthritic male DBA/1 J mice. Repeated treatment of naïve control DBA/1 J mice with rituximab did not exhibit any significant deleterious effects. Moreover, repeated administration of rituximab to the arthritic DBA/1 J mice suppressed disease severity and decreased testicular disruptions. Rituximab treatment also diminished gonadal oxidative stress, through decreasing reactive oxygen species generation and restoring the reduced glutathione level in arthritic DBA/1 J mice. In conclusion, rituximab is a safe therapeutic agent and can mitigate gonadal disruptions induced by arthritis, which insinuates the importance for arthritic patients especially at reproductive age.


Subject(s)
Antineoplastic Agents , Antirheumatic Agents , Arthritis, Experimental , Arthritis, Rheumatoid , Animals , Mice , Male , Rituximab/adverse effects , Arthritis, Experimental/drug therapy , Arthritis, Experimental/chemically induced , Arthritis, Experimental/pathology , Mice, Inbred DBA , Semen , Antirheumatic Agents/adverse effects , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Arthritis, Rheumatoid/drug therapy , Antineoplastic Agents/therapeutic use
16.
Saudi Pharm J ; 30(8): 1159-1169, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36164571

ABSTRACT

Gefitinib is a tyrosine kinase inhibitor (TKI) of the epidermal growth factor receptor (EGFR), used for the treatment of advanced or metastatic non-small cell lung cancer. Recently, studies proved that Gefitinib-induced cardiotoxicity through induction of oxidative stress leads to cardiac hypertrophy. The current study was conducted to understand the mechanisms underlying gefitinib-induced cardiac hypertrophy through studying the roles of angiotensin II (AngII), oxidative stress, and mitogen-activated protein kinase (MAPK) pathway. Male Wistar albino rats were treated with valsartan, gefitinib, or both for four weeks. Blood samples were collected for AngII and cardiac markers measurement, and hearts were harvested for histological study and biochemical analysis. Gefitinib caused histological changes in the cardiac tissues and increased levels of cardiac hypertrophy markers, AngII and its receptors. Blocking of AngII type 1 receptor (AT1R) via valsartan protected hearts and normalized cardiac markers, AngII levels, and the expression of its receptors during gefitinib treatment. valsartan attenuated gefitinib-induced NADPH oxidase and oxidative stress leading to down-regulation of JNK/p38-MAPK pathway. Collectively, AT1R blockade adjusted AngII-induced NADPH oxidase and JNK/p38-MAPK leading to attenuation of gefitinib-induced cardiac hypertrophy. This study found a pivotal role of AngII/AT1R signaling in gefitinib-induced cardiac hypertrophy, which may provide novel approaches in the management of EGFRIs-induced cardiotoxicity.

17.
Medicina (Kaunas) ; 58(7)2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35888608

ABSTRACT

Background and Objectives: The development of radioresistance is a fundamental barrier to successful glioblastoma therapy. Autophagy is thought to play a role in facilitating the DNA repair of DNA damage foci in radiation-exposed tumor cells, thus, potentially contributing to their restoration of proliferative capacity and development of resistance in vitro. However, the effect of autophagy inhibitors on DNA damage repair is not fully clear and requires further investigation. Materials and Methods: In this work, we utilized M059K (DNA-PKcs proficient) and M059J (DNA-PKcs deficient) glioma cell lines to investigate the role of autophagy inhibitors in the DNA repair of radiation-induced DNA damage. Cell viability following radiation was determined by trypan blue exclusion in both cell lines. Cell death and autophagy assays were performed to evaluate radiation-induced cell stress responses. DNA damage was measured as based on the intensity of phosphorylated γ-H2AX, a DNA double-stranded breaks (DSBs) marker, in the presence or absence of autophagy inhibitors. Results: The cell viability assay showed that M059J cells were more sensitive to the same dose of radiation (4 Gy) than M059K cells. This observation was accompanied by an elevation in γ-H2AX formation in M059J but not in M059K cells. In addition, the DAPI/TUNEL and Senescence-associated ß-galactosidase (SA-ß-gal) staining assays did not reveal significant differences in apoptosis and/or senescence induction in response to radiation, respectively, in either cell line. However, acridine orange staining demonstrated clear promotion of acidic vesicular organelles (AVOs) in both cell lines in response to 4 Gy radiation. Moreover, DNA damage marker levels were found to be elevated 72 h post-radiation when autophagy was inhibited by the lysosomotropic agent bafilomycin A1 (BafA1) or the PI3K inhibitor 3-methyl adenine (3-MA) in M059K cells. Conclusions: The extent of the DNA damage response remained high in the DNA-PKcs deficient cells following exposure to radiation, indicating their inability to repair the newly formed DNA-DSBs. On the other hand, radioresistant M059K cells showed more DNA damage response only when autophagy inhibitors were used with radiation, suggesting that the combination of autophagy inhibitors with radiation may interfere with DNA repair efficiency.


Subject(s)
Glioma , Phosphatidylinositol 3-Kinases , Autophagy , Cell Line, Tumor , DNA , DNA Repair , Glioma/drug therapy , Glioma/genetics , Glioma/radiotherapy , Humans , Radiation Tolerance/physiology
18.
Metallomics ; 14(8)2022 08 09.
Article in English | MEDLINE | ID: mdl-35869976

ABSTRACT

Three platinum(II) complexes of dicyclopentadiene (DCP) and dithiocarbamates (DTCs), namely, [Pt(η4-DCP)(Me2DTC)]PF6 (1), [Pt(η4-DCP)(Et2DTC)]PF6 (2), and [Pt(η4-DCP)(Bz2DTC)]PF6 (3) [Me2DTC = dimethyldithiocarbamate, Et2DTC = diethyldithiocarbamate, and Bz2DTC = dibenzyldithiocarbamate] were prepared and characterized by elemental analysis, IR, 1H, and 13C Nuclear Magnetic Resonance spectroscopy. The spectroscopic data indicated the coordination of both DCP and DTC ligands to platinum(II). The solution chemistry of complex 1 revealed that the complexes are stable in both dimethyl sulfoxide (DMSO) and 1:1 mixture of DMSO:H2O. In vitro cytotoxicity of the complexes relative to cisplatin was tested using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, against CHL-1 (human melanoma cancer cells), MDA-MB-231 (breast cancer cells), A549 (lung cancer cells), and B16 (murine melanoma cancer cells). The antiproliferative effect of all three prepared complexes was found to be significantly higher than cisplatin. Furthermore, flow cytometric analysis of complex 1 showed that the complex induced apoptosis, oxidative stress, mitochondrial potential depolarization and cell cycle arrest in a concentration-dependent pattern in the CHL-1 cells. Confirmation of apoptosis via gene expression analysis demonstrated down-regulation of anti-apoptotic genes and up-regulation of pro-apoptotic genes in the CHL-1 cells. Wound-healing assays also lent support to the strong cytotoxicity of the complexes. In vivo studies showed a significant reduction of tumor volume at the end of the experiment. In addition, the drug did not change the weight of the mice. In conclusion, complex 1 inhibited cell proliferation in vitro and reduced tumor growth in vivo.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Melanoma , Animals , Antineoplastic Agents/chemistry , Apoptosis , Cell Line, Tumor , Cisplatin/pharmacology , Coordination Complexes/chemistry , Dimethyl Sulfoxide/pharmacology , Drug Screening Assays, Antitumor , Humans , Indenes , Mice , Platinum/chemistry
19.
Saudi Pharm J ; 30(2): 138-149, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35528855

ABSTRACT

Melanoma is an aggressive skin cancer with a high rate of metastasis to other organs. Recent studies specified the overexpression of V-domain Ig suppressor of T-cell activation (VISTA) and Aryl Hydrocarbon Receptor (AHR) in melanoma. Metformin shows anti-tumor activities in several cancer types. However, the mechanism is unclear. This study aims to investigate the inhibitory effect of metformin on VISTA via AHR in melanoma cells (CHL-1, B16) and animal models. VISTA and AHR levels were assessed by qPCR, Western blot, immunofluorescence microscope, flow cytometry, and immunohistochemistry. Here, metformin significantly decreased VISTA and AHR levels in vitro and in vivo. Furthermore, metformin inhibited all AHR-regulated genes. VISTA levels were dramatically inhibited by AHR modulations using shRNA and αNF, confirming the central role of AHR in VISTA. Finally, melanoma cells were xenografted in C57BL/6 and nude mice. Metformin significantly reduced the tumor volume and growth rate. Likewise, VISTA and AHR-regulated protein levels were suppressed in both models. These findings demonstrate for the first time that VISTA is suppressed by metformin and identified a new regulatory mechanism through AHR. The data suggest that metformin could be a new potential therapeutic strategy to treat melanoma patients combined with targeted immune checkpoint inhibitors.

20.
Saudi J Biol Sci ; 28(12): 7396-7403, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34867043

ABSTRACT

Metformin (MET) is a clinically used anti-hyperglycemic agent that shows activities against chemically-induced animal models of cancer. A study from our laboratory showed that MET protectes against 7, 12-dimethylbenz[a]anthracene (DMBA)-induced carcinogenesis in vitro human non-cancerous epithelial breast cells (MCF10A) via activation of the aryl hydrocarbon receptor (AhR). However, it is unclear whether MET can prevent the initiation of breast carcinogenesis in an in vivo rat model of AhR-induced breast carcinogenesis. Therefore, the main aims of this study are to examine the effect of MET on protecting against rat breast carcinogenesis induced by DMBA and to explore whether this effect is medicated through the AhR pathway. In this study, treatment of female rats with DMBA initiated breast carcinogenesis though inhibiting apoptosis and tumor suppressor genes while inducing oxidative DNA damage and cell cycle proliferative markers. This effect was associated with activation of AhR and its downstream target genes; cytochrome P4501A1 (CYP1A1) and CYP1B1. Importantly, MET treatment protected against DMBA-induced breast carcinogenesis by restoring DMBA effects on apoptosis, tumor suppressor genes, DNA damage, and cell proliferation. Mechanistically using in vitro human breast cancer MCF-7 cells, MET inhibited breast cancer stem cells spheroids formation and development by DMBA, which was accompanied by a proportional inhibition in CYP1A1 gene expression. In conclusion, the study reports evidence that MET is an effective chemopreventive therapy for breast cancer by inhibiting the activation of CYP1A1/CYP1B1 pathway in vivo rat model.

SELECTION OF CITATIONS
SEARCH DETAIL
...