Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(9)2023 May 07.
Article in English | MEDLINE | ID: mdl-37175348

ABSTRACT

Replication of Human Cytomegalovirus (HCMV) requires the presence of a metal-dependent endonuclease at the C-terminus of pUL89, in order to properly pack and cleave the viral genome. Therefore, pUL89 is an attractive target to design anti-CMV intervention. Herein, we used integrated structure-based and ligand-based virtual screening approaches in combination with MD simulation for the identification of potential metal binding small molecule antagonist of pUL89. In this regard, the essential chemical features needed for the inhibition of pUL89 endonuclease domain were defined and used as a 3D query to search chemical compounds from ZINC and ChEMBL database. Thereafter, the molecular docking and ligand-based shape screening were used to narrow down the compounds based on previously identified pUL89 antagonists. The selected virtual hits were further subjected to MD simulation to determine the intrinsic and ligand-induced flexibility of pUL89. The predicted binding modes showed that the compounds reside well in the binding site of endonuclease domain by chelating with the metal ions and crucial residues. Taken in concert, the in silico investigation led to the identification of potential pUL89 antagonists. This study provided promising starting point for further in vitro and in vivo studies.


Subject(s)
Cytomegalovirus , Endonucleases , Humans , Endonucleases/metabolism , Cytomegalovirus/metabolism , Viral Proteins/metabolism , Molecular Docking Simulation , Ligands , Endodeoxyribonucleases/metabolism , Molecular Dynamics Simulation
2.
Molecules ; 28(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37049963

ABSTRACT

Industrial effluents containing dyes are the dominant pollutants, making the drinking water unfit. Among the dyes, methylene orange (MO) dye is mutagenic, carcinogenic and toxic to aquatic organisms. Therefore, its removal from water bodies through effective and economical approach is gaining increased attention in the last decades. Photocatalytic degradation has the ability to convert economically complex dye molecules into non-toxic and smaller species via redox reactions, by using photocatalysts. g-C3N4 is a metal-free n-type semiconductor, typical nonmetallic and non-toxici polymeric photocatalyst. It widely used in photocatalytic materials, due to its easy and simple synthesis, fascinating electronic band structure, high stability and abundant availability. As a photocatalyst, its major drawbacks are its limited efficiency in separating photo-excited electron-hole pairs, high separated charge recombination, low specific surface area, and low absorption coefficient. In this review, we report the recent modification strategies adopted for g-C3N4 for the efficient photodegradation of MO dye. The different modification approaches, such as nanocomposites and heterojunctions, as well as doping and defect introductions, are briefly discussed. The mechanism of the photodegradation of MO dye by g-C3N4 and future perspectives are discussed. This review paper will predict strategies for the fabrication of an efficient g-C3N4-based photocatalyst for the photodegradation of MO dye.

SELECTION OF CITATIONS
SEARCH DETAIL
...