Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Sci Rep ; 13(1): 20507, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37993530

ABSTRACT

SARS-CoV-2 undergoes frequent mutations, affecting COVID-19 diagnostics, transmission and vaccine efficacy. Here, we describe the genetic diversity of 49 SARS-CoV-2 samples from Uganda, collected during the COVID-19 waves of 2020/2021. Overall, the samples were similar to previously reported SARS-CoV-2 from Uganda and the Democratic Republic of Congo (DRC). The main lineages were AY.46 and A.23, which are considered to be Delta SARS-CoV-2 variants. Further, a total of 268 unique single nucleotide variants and 1456 mutations were found, with more than seventy percent mutations in the ORF1ab and S genes. The most common mutations were 2042C>G (83.4%), 14143C>T (79.5%), 245T>C (65%), and 1129G>T (51%), which occurred in the S, ORF1ab, ORF7a and N genes, respectively. As well, 28 structural variants-21 insertions and 7 deletions, occurred in 16 samples. Our findings point to the possibility that most SARS-CoV-2 infections in Uganda at the time arose from local spread and were not newly imported. Moreover, the relatedness of variants from Uganda and the DRC reflects high human mobility and interaction between the two countries, which is peculiar to this region of the world.


Subject(s)
COVID-19 , Nanopore Sequencing , Humans , SARS-CoV-2/genetics , Uganda/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Genomics
2.
J Clin Virol ; 162: 105422, 2023 05.
Article in English | MEDLINE | ID: mdl-36989731

ABSTRACT

BACKGROUND: The COVID-19 pandemic led to severe health systems collapse, as well as logistics and supply delivery shortages across sectors. Delivery of PCR related healthcare supplies continue to be hindered. There is the need for a rapid and accessible SARS-CoV-2 molecular detection method in low resource settings. OBJECTIVES: To validate a novel isothermal amplification method for rapid detection of SARS-CoV-2 across seven sub-Sharan African countries. STUDY DESIGN: In this multi-country phase 2 diagnostic study, 3,231 clinical samples in seven African sites were tested with two reverse transcription Recombinase-Aided Amplification (RT-RAA) assays (based on SARS-CoV-2 Nucleocapsid (N) gene and RNA-dependent RNA polymerase (RdRP) gene). The test was performed in a mobile suitcase laboratory within 15 min. All results were compared to a real-time RT-PCR assay. Extraction kits based on silica gel or magnetic beads were applied. RESULTS: Four sites demonstrated good to excellent agreement, while three sites showed fair to moderate results. The RdRP gene assay exhibited an overall PPV of 0.92 and a NPV of 0.88. The N gene assay exhibited an overall PPV of 0.93 and a NPV 0.88. The sensitivity of both RT-RAA assays varied depending on the sample Ct values. When comparing sensitivity between sites, values differed considerably. For high viral load samples, the RT-RAA assay sensitivity ranges were between 60.5 and 100% (RdRP assay) and 25 and 98.6 (N assay). CONCLUSION: Overall, the RdRP based RT-RAA test showed the best assay accuracy. This study highlights the challenges of implementing rapid molecular assays in field conditions. Factors that are important for successful deployment across countries include the implementation of standardized operation procedures, in-person continuous training for staff, and enhanced quality control measures.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Pandemics , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods , Real-Time Polymerase Chain Reaction , Africa South of the Sahara , RNA, Viral/genetics
3.
Open Res Afr ; 5: 33, 2022.
Article in English | MEDLINE | ID: mdl-37224314

ABSTRACT

Biorepositories are essential because they guarantee the proper storage and distribution of biospecimens and their associated data for current and future research. In Eastern and Central Africa, the Integrated Biorepository of H3Africa Uganda (IBRH3AU) at Makerere University in Uganda was the first of its kind. It is strategically located at Makerere University College of Health Sciences, which is home to some of Uganda's most relevant and impactful infectious and non-infectious disease research.  Since its inception as a pilot project in 2012, the IBRH3AU biorepository has grown into a state-of-the-art facility serving the H3Africa consortium and the rest of the scientific community. IBRH3AU has built a solid infrastructure over the past ten years with cutting-edge methods and technologies for the collection, processing, quality control, handling, management, storage and shipment of biospecimens. H3Africa researchers, local researchers, postgraduate and postdoctoral students, and the greater scientific community in Eastern and Central Africa and beyond have benefited from IBRH3AU's exceptional biobanking services.

4.
Afr Health Sci ; 22(3): 506-511, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36910368

ABSTRACT

Invasive pulmonary aspergillosis is known to complicate the coronavirus diseases-2019 (COVID-19), especially those with critical illness. We investigated the baseline anti-Aspergillus antibody serostatus of patients with moderate-critical COVID-19 hospitalized at 3 COVID-19 Treatment Units in Uganda. All 46 tested patients, mean age 30, and 11% with underlying respiratory disease had a negative serum anti-Aspergillus IgM/IgG antibody immunochromatographic test on day 3 (mean) of symptom onset (range 1-26), but follow up specimens to assess seroconversion were not available.


Subject(s)
COVID-19 , Humans , Adult , Immunoglobulin G , Uganda , COVID-19 Drug Treatment , Sensitivity and Specificity , Immunoglobulin M , Antibodies, Viral
5.
African Health Sciences ; 22(3): 506-511, 2022-10-26. Tables
Article in English | AIM (Africa) | ID: biblio-1401811

ABSTRACT

Invasive pulmonary aspergillosis is known to complicate the coronavirus diseases-2019 (COVID-19), especially those with critical illness. We investigated the baseline anti Aspergillus antibody serostatus of patients with moderate-critical COVID-19 hospitalized at 3 COVID-19 Treatment Units in Uganda. All 46 tested patients, mean age 30, and 11% with underlying respiratory disease had a negative serum anti-Aspergillus IgM/IgG antibody immunochromatographic test on day 3 (mean) of symptom onset (range 1-26), but follow up specimens to assess seroconversion were not available


Subject(s)
Critical Illness , Invasive Pulmonary Aspergillosis , COVID-19 , Patients , Uganda
SELECTION OF CITATIONS
SEARCH DETAIL
...