Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 94(10)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37877791

ABSTRACT

The nuclear resonant scattering (NRS) experiment requires photon-counting detectors with high time resolution, short dead time, large dynamic range, low noise, and large detection area. An 8-channel avalanche photodiode (APD) array detector system with high integrity, flexibility, and reliability has been developed to adapt to the demands of NRS experiments. The detector system mainly consists of four key parts: (i) an array-APD sensor, (ii) 8-channel integrated fast preamplifiers, (iii) the time-to-digital converter readout electronics, and (iv) a data acquisition system and EPICS support software. Remarkably, the system exhibits a time resolution of better than 500 ps and has a sufficiently low noise level, allowing for the lowest detection energy threshold of 4 keV. The performance of the new array-APD system as well as its real application in nuclear forward scattering (NFS) and nuclear resonant inelastic x-ray scattering (NRIXS) experiments was tested in two synchrotron facilities. With the new system, the NFS signal very close to the prompt electronic scattering signal can be extracted. Thanks to the customized EPICS-areaDetector-based control software, NRIXS spectra can be readily measured with time and energy information of the NRIXS signal stored in the raw data, which is promising for developing NRIXS data analysis in the time domain. The array-APD detector can be deployed for nuclear resonant scattering experiments at various synchrotron radiation facilities.

2.
Dalton Trans ; 51(46): 17753-17761, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36346270

ABSTRACT

We have performed and analyzed the first combined 151Eu and 57Fe nuclear resonant vibrational spectroscopy (NRVS) for naturally abundant KEu(III)[Fe(II)(CN)6] and Eu(III)[Fe(III)(CN)6] complexes. Comparison of the observed 151Eu vs.57Fe NRVS spectroscopic features confirms that Eu(III) in both KEu(III)[Fe(II)(CN)6] and Eu(III)[Fe(III)(CN)6] occupies a position outside the [Fe(CN)6] core and coordinates to the N atoms of the CN- ions, whereas Fe(III) or Fe(II) occupies the site inside the [Fe(CN)6]4- core and coordinates to the C atoms of the CN- ions. In addition to the spectroscopic interest, the results from this study provide invaluable insights for the design and evaluation of the nanoparticles of such complexes as potential cellular contrast agents for their use in magnetic resonance imaging. The combined 151Eu and 57Fe NRVS measurements are also among the first few explorations of bi-isotopic NRVS experiments.


Subject(s)
Ferrous Compounds , Iron , Iron/chemistry , Spectrum Analysis
3.
Nat Commun ; 11(1): 6167, 2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33268778

ABSTRACT

Thermoelectrics are promising by directly generating electricity from waste heat. However, (sub-)room-temperature thermoelectrics have been a long-standing challenge due to vanishing electronic entropy at low temperatures. Topological materials offer a new avenue for energy harvesting applications. Recent theories predicted that topological semimetals at the quantum limit can lead to a large, non-saturating thermopower and a quantized thermoelectric Hall conductivity approaching a universal value. Here, we experimentally demonstrate the non-saturating thermopower and quantized thermoelectric Hall effect in the topological Weyl semimetal (WSM) tantalum phosphide (TaP). An ultrahigh longitudinal thermopower [Formula: see text] and giant power factor [Formula: see text] are observed at ~40 K, which is largely attributed to the quantized thermoelectric Hall effect. Our work highlights the unique quantized thermoelectric Hall effect realized in a WSM toward low-temperature energy harvesting applications.

4.
Angew Chem Int Ed Engl ; 59(50): 22667-22674, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-32833290

ABSTRACT

Operando nuclear resonant inelastic X-ray scattering (NRIXS) and X-ray absorption fine-structure spectroscopy (XAFS) measurements were used to gain insight into the structure and surface composition of FeCu and FeAg nanoparticles (NPs) during the electrochemical CO2 reduction (CO2 RR) and to extract correlations with their catalytic activity and selectivity. The formation of a core-shell structure during CO2 RR for FeAg NPs was inferred from the analysis of the operando NRIXS data (phonon density of states, PDOS) and XAFS measurements. Electrochemical analysis of the FeAg NPs revealed a faradaic selectivity of 36 % for CO in 0.1 M KHCO3 at -1.1 V vs. RHE, similar to that of pure Ag NPs. In contrast, a predominant selectivity towards H2 evolution is obtained in the case of the FeCu NPs, analogous to the results obtained for pure Fe NPs, although small Cu NPs have also been shown to favor H2 production.

5.
Phys Rev Lett ; 124(23): 236401, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32603171

ABSTRACT

The electron-phonon interaction (EPI) is instrumental in a wide variety of phenomena in solid-state physics, such as electrical resistivity in metals, carrier mobility, optical transition, and polaron effects in semiconductors, lifetime of hot carriers, transition temperature in BCS superconductors, and even spin relaxation in diamond nitrogen-vacancy centers for quantum information processing. However, due to the weak EPI strength, most phenomena have focused on electronic properties rather than on phonon properties. One prominent exception is the Kohn anomaly, where phonon softening can emerge when the phonon wave vector nests the Fermi surface of metals. Here we report a new class of Kohn anomaly in a topological Weyl semimetal (WSM), predicted by field-theoretical calculations, and experimentally observed through inelastic x-ray and neutron scattering on WSM tantalum phosphide. Compared to the conventional Kohn anomaly, the Fermi surface in a WSM exhibits multiple topological singularities of Weyl nodes, leading to a distinct nesting condition with chiral selection, a power-law divergence, and non-negligible dynamical effects. Our work brings the concept of the Kohn anomaly into WSMs and sheds light on elucidating the EPI mechanism in emergent topological materials.

6.
J Synchrotron Radiat ; 27(Pt 3): 827-835, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32381787

ABSTRACT

Inelastic X-ray scattering is a powerful and versatile technique for studying lattice dynamics in materials of scientific and technological importance. In this article, the design and capabilities of the momentum-resolved high-energy-resolution inelastic X-ray spectrometer (HERIX) at beamline 30-ID of the Advanced Photon Source are reported. The instrument operates at 23.724 keV and has an energy resolution of 1.3-1.7 meV. It can accommodate momentum transfers of up to 72  nm-1, at a typical X-ray flux of 4.5 × 109 photons s-1 meV-1 at the sample. A suite of in situ sample environments are provided, including high pressure, static magnetic fields and uniaxial strains, all at high or cryogenic temperatures.

7.
Angew Chem Int Ed Engl ; 55(47): 14575-14579, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27778474

ABSTRACT

The reaction of protein-bound iron-sulfur (Fe-S) clusters with nitric oxide (NO) plays key roles in NO-mediated toxicity and signaling. Elucidation of the mechanism of the reaction of NO with DNA regulatory proteins that contain Fe-S clusters has been hampered by a lack of information about the nature of the iron-nitrosyl products formed. Herein, we report nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT) calculations that identify NO reaction products in WhiD and NsrR, regulatory proteins that use a [4Fe-4S] cluster to sense NO. This work reveals that nitrosylation yields multiple products structurally related to Roussin's Red Ester (RRE, [Fe2 (NO)4 (Cys)2 ]) and Roussin's Black Salt (RBS, [Fe4 (NO)7 S3 ]. In the latter case, the absence of 32 S/34 S shifts in the Fe-S region of the NRVS spectra suggest that a new species, Roussin's Black Ester (RBE), may be formed, in which one or more of the sulfide ligands is replaced by Cys thiolates.


Subject(s)
Iron-Sulfur Proteins/metabolism , Iron/metabolism , Nitric Oxide/metabolism , Nitrogen Oxides/metabolism , Nitroso Compounds/metabolism , Iron/chemistry , Iron-Sulfur Proteins/chemistry , Molecular Conformation , Nitric Oxide/chemistry , Nitrogen Oxides/chemistry , Quantum Theory
8.
Angew Chem Int Ed Engl ; 52(2): 724-8, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23136119

ABSTRACT

Nuclear inelastic scattering of (57)Fe labeled [NiFe] hydrogenase is shown to give information on different states of the enzyme. It was thus possible to detect and assign Fe-CO and Fe-CN bending and stretching vibrations of the active site outside the spectral range of the Fe-S cluster normal modes.


Subject(s)
Hydrogenase/chemistry , Catalytic Domain , Electron Spin Resonance Spectroscopy , Hydrogenase/metabolism , Iron Compounds/chemistry , Models, Molecular , Oxidation-Reduction , Spectroscopy, Fourier Transform Infrared , Vibration
9.
Hyperfine Interact ; 222(2 Suppl): 77-90, 2013 Dec.
Article in English | MEDLINE | ID: mdl-26052177

ABSTRACT

We have applied 57Fe nuclear resonance vibrational spectroscopy (NRVS) for the first time to study the dynamics of Fe centers in Fe-S protein crystals, including oxidized wild type rubredoxin crystals from Pyrococcus furiosus, and the MoFe protein of nitrogenase from Azotobacter vinelandii. Thanks to the NRVS selection rule, selectively probed vibrational modes have been observed in both oriented rubredoxin and MoFe protein crystals. The NRVS work was complemented by extended X-ray absorption fine structure spectroscopy (EXAFS) measurements on oxidized wild type rubredoxin crystals from Pyrococcus furiosus. The EXAFS spectra revealed the Fe-S bond length difference in oxidized Pf Rd protein, which is qualitatively consistent with the X-ray crystal structure.

10.
J Phys Chem B ; 115(15): 4469-73, 2011 Apr 21.
Article in English | MEDLINE | ID: mdl-21434623

ABSTRACT

Flexibility is an important property of porphyrins, both natural and synthetic. We applied two synchrotron-based techniques, nuclear resonance vibrational spectroscopy and inelastic X-ray scattering, to quantify this property by measuring the bulk modulus of a protein active-site mimic [chloro(octaethylporphyrinato)iron(III)] and the resilience of the iron environment. Their values are 6.95 ± 0.24 GPa and 15.4 ± 0.5 N/m, respectively.


Subject(s)
Hemeproteins/chemistry , Porphyrins/chemistry , Animals , Biomimetics , Catalytic Domain , Humans , Models, Molecular , Spectrum Analysis
11.
Phys Rev Lett ; 101(13): 135501, 2008 Sep 26.
Article in English | MEDLINE | ID: mdl-18851459

ABSTRACT

Molecular dynamics simulations and neutron scattering experiments have shown that many hydrated globular proteins exhibit a universal dynamic transition at TD = 220 K, below which the biological activity of a protein sharply diminishes. We studied the phononlike low-energy excitations of two structurally very different proteins, lysozyme and bovine serum albumin, using inelastic x-ray scattering above and below TD. We found that the excitation energies of the high-Q phonons show a marked softening above TD. This suggests that the large amplitude motions of wavelengths corresponding to this specific Q range are intimately correlated with the increase of biological activities of the proteins.


Subject(s)
Models, Chemical , Muramidase/chemistry , Serum Albumin, Bovine/chemistry , Elasticity , Models, Molecular , Neutron Diffraction , Protein Folding , Protein Structure, Secondary , Thermodynamics , X-Ray Diffraction
12.
Biochemistry ; 47(25): 6612-27, 2008 Jun 24.
Article in English | MEDLINE | ID: mdl-18512953

ABSTRACT

We have used (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study the Fe(2)S(2)(Cys)(4) sites in oxidized and reduced [2Fe-2S] ferredoxins from Rhodobacter capsulatus (Rc FdVI) and Aquifex aeolicus (Aa Fd5). In the oxidized forms, nearly identical NRVS patterns are observed, with strong bands from Fe-S stretching modes peaking around 335 cm(-1), and additional features observed as high as the B(2u) mode at approximately 421 cm(-1). Both forms of Rc FdVI have also been investigated by resonance Raman (RR) spectroscopy. There is good correspondence between NRVS and Raman frequencies, but because of different selection rules, intensities vary dramatically between the two kinds of spectra. For example, the B(3u) mode at approximately 288 cm(-1), attributed to an asymmetric combination of the two FeS(4) breathing modes, is often the strongest resonance Raman feature. In contrast, it is nearly invisible in the NRVS, as there is almost no Fe motion in such FeS(4) breathing. NRVS and RR analysis of isotope shifts with (36)S-substituted into bridging S(2-) ions in Rc FdVI allowed quantitation of S(2-) motion in different normal modes. We observed the symmetric Fe-Fe stretching mode at approximately 190 cm(-1) in both NRVS and RR spectra. At still lower energies, the NRVS presents a complex envelope of bending, torsion, and protein modes, with a maximum at 78 cm(-1). The (57)Fe partial vibrational densities of states (PVDOS) were interpreted by normal-mode analysis with optimization of Urey-Bradley force fields. Progressively more complex D(2h) Fe(2)S(2)S'(4), C(2h) Fe(2)S(2)(SCC)(4), and C(1) Fe(2)S(2)(Cys)(4) models were optimized by comparison with the experimental spectra. After modification of the CHARMM22 all-atom force field by the addition of refined Fe-S force constants, a simulation employing the complete protein structure was used to reproduce the PVDOS, with better results in the low frequency protein mode region. This process was then repeated for analysis of data on the reduced FdVI. Finally, the degree of collectivity was used to quantitate the delocalization of the dynamic properties of the redox-active Fe site. The NRVS technique demonstrates great promise for the observation and quantitative interpretation of the dynamical properties of Fe-S proteins.


Subject(s)
Bacterial Proteins/chemistry , Ferredoxins/chemistry , Spectrum Analysis, Raman/methods , Spectrum Analysis/methods , Algorithms , Bacteria/metabolism , Iron/chemistry , Models, Molecular , Oxidation-Reduction , Protein Conformation , Rhodobacter capsulatus/metabolism , Sulfur/chemistry , Vibration
13.
Inorg Chem ; 47(10): 3969-77, 2008 May 19.
Article in English | MEDLINE | ID: mdl-18407624

ABSTRACT

We have used (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study the iron site in the iron-sulfur cluster-free hydrogenase Hmd from the methanogenic archaeon Methanothermobacter marburgensis. The spectra have been interpreted by comparison with a cis-(CO)2-ligated Fe model compound, Fe(S2C2H4)(CO)2(PMe3)2, as well as by normal mode simulations of plausible active site structures. For this model complex, normal mode analyses both from an optimized Urey-Bradley force field and from complementary density functional theory (DFT) calculations produced consistent results. For Hmd, previous IR spectroscopic studies found strong CO stretching modes at 1944 and 2011 cm(-1), interpreted as evidence for cis-Fe(CO)2 ligation. The NRVS data provide further insight into the dynamics of the Fe site, revealing Fe-CO stretch and Fe-CO bend modes at 494, 562, 590, and 648 cm(-1), consistent with the proposed cis-Fe(CO)2 ligation. The NRVS also reveals a band assigned to Fe-S stretching motion at approximately 311 cm(-1) and another reproducible feature at approximately 380 cm(-1). The (57)Fe partial vibrational densities of states (PVDOS) for Hmd can be reasonably well simulated by a normal mode analysis based on a Urey-Bradley force field for a five-coordinate cis-(CO)2-ligated Fe site with additional cysteine, water, and pyridone cofactor ligands. A "truncated" model without a water ligand can also be used to match the NRVS data. A final interpretation of the Hmd NRVS data, including DFT analysis, awaits a three-dimensional structure for the active site.


Subject(s)
Hydrogenase/chemistry , Hydrogenase/metabolism , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Iron/chemistry , Sulfur/chemistry , Vibration , Computer Simulation , Methanobacteriaceae/enzymology , Models, Molecular , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular
14.
Phys Rev Lett ; 98(24): 245502, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17677973

ABSTRACT

Determination of the lattice dynamics of Sn at high pressure has represented a major experimental challenge and eluded previous attempts. Here we report the first successful measurement of the phonon density of states of Sn at high pressure to 64 GPa using nuclear resonant inelastic x-ray scattering. We also present density functional theory calculations that are in excellent agreement with the measured data. The results of this combined experimental and theoretical study establish reliable phonon density of states of Sn at high pressure. It makes possible an accurate description of its thermodynamic properties that are of great importance and interest in high pressure research.

15.
J Am Chem Soc ; 128(23): 7608-12, 2006 Jun 14.
Article in English | MEDLINE | ID: mdl-16756317

ABSTRACT

Nitrogenase catalyzes a reaction critical for life, the reduction of N(2) to 2NH(3), yet we still know relatively little about its catalytic mechanism. We have used the synchrotron technique of (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study the dynamics of the Fe-S clusters in this enzyme. The catalytic site FeMo-cofactor exhibits a strong signal near 190 cm(-)(1), where conventional Fe-S clusters have weak NRVS. This intensity is ascribed to cluster breathing modes whose frequency is raised by an interstitial atom. A variety of Fe-S stretching modes are also observed between 250 and 400 cm(-)(1). This work is the first spectroscopic information about the vibrational modes of the intact nitrogenase FeMo-cofactor and P-cluster.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Molybdoferredoxin/chemistry , Nitrogenase/chemistry , Algorithms , Ammonia/chemistry , Catalysis , Iron Compounds/chemistry , Models, Molecular , Nitrogen/chemistry , Sulfur Compounds/chemistry , Thermodynamics , Vibration
16.
J Chem Phys ; 123(21): 214909, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16356072

ABSTRACT

The phonon propagation and damping along the axial direction of films of aligned 40 wt % calf-thymus DNA rods are studied by inelastic x-ray scattering (IXS). The IXS spectra are analyzed with the generalized three effective eigenmode theory, from which we extract the dynamic structure factor S(Q,E) as a function of transferred energy E=variant Planck's over 2piomega, and the magnitude of the transferred wave vector Q. S(Q,E) of a DNA sample typically consists of three peaks, one central Rayleigh scattering peak, and two symmetric Stokes and anti-Stokes Brillouin side peaks. By analyzing the Brillouin peaks, the phonon excitation energy and damping can be extracted at different Q values from about 4 to 30 nm(-1). A high-frequency sound speed is obtained from the initial slope of the linear portion of the dispersion relation below Q=4 nm(-1). The high-frequency sound speed obtained in this Q range is 3100 ms, which is about twice faster than the ultrasound speed of 1800 ms, measured by Brillouin light scattering at Q approximately 0.01 nm(-1) at the similar hydration level. Our observations provide further evidence of the strong coupling between the internal dynamics of a DNA molecule and the dynamics of the solvent. The effect on damping and propagation of phonons along the axial direction of DNA rods due to divalent and trivalent counterions has been studied. It is found that the added multivalent counterions introduce stronger phonon damping. The phonons at the range between approximately 12.5 and approximately 22.5 nm(-1) are overdamped by the added counterions according to our model analyses. The intermediate scattering function is extracted and it shows a clear two-step relaxation with the fast relaxation time ranging from 0.1 to 4 ps.


Subject(s)
DNA/chemistry , Liquid Crystals , Vibration , Sound , Spectrum Analysis , X-Rays
17.
J Am Chem Soc ; 127(42): 14596-606, 2005 Oct 26.
Article in English | MEDLINE | ID: mdl-16231912

ABSTRACT

We have used (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study the Fe(S(cys))(4) site in reduced and oxidized rubredoxin (Rd) from Pyrococcus furiosus (Pf). The oxidized form has also been investigated by resonance Raman spectroscopy. In the oxidized Rd NRVS, strong asymmetric Fe-S stretching modes are observed between 355 and 375 cm(-1); upon reduction these modes shift to 300-320 cm(-1). This is the first observation of Fe-S stretching modes in a reduced Rd. The peak in S-Fe-S bend mode intensity is at approximately 150 cm(-1) for the oxidized protein and only slightly lower in the reduced case. A third band occurs near 70 cm(-1) for both samples; this is assigned primarily as a collective motion of entire cysteine residues with respect to the central Fe. The (57)Fe partial vibrational density of states (PVDOS) were interpreted by normal mode analysis with optimization of Urey-Bradley force fields. The three main bands were qualitatively reproduced using a D(2)(d) Fe(SC)(4) model. A C(1) Fe(SCC)(4) model based on crystallographic coordinates was then used to simulate the splitting of the asymmetric stretching band into at least 3 components. Finally, a model employing complete cysteines and 2 additional neighboring atoms was used to reproduce the detailed structure of the PVDOS in the Fe-S stretch region. These results confirm the delocalization of the dynamic properties of the redox-active Fe site. Depending on the molecular model employed, the force constant K(Fe-S) for Fe-S stretching modes ranged from 1.24 to 1.32 mdyn/A. K(Fe-S) is clearly diminished in reduced Rd; values from approximately 0.89 to 1.00 mdyn/A were derived from different models. In contrast, in the final models the force constants for S-Fe-S bending motion, H(S-Fe-S), were 0.18 mdyn/A for oxidized Rd and 0.15 mdyn/A for reduced Rd. The NRVS technique demonstrates great promise for the observation and quantitative interpretation of the dynamical properties of Fe-S proteins.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Models, Chemical , Pyrococcus furiosus/chemistry , Rubredoxins/chemistry , Spectrum Analysis, Raman/methods , Iron Isotopes , Oxidation-Reduction , Protein Conformation , Protein Structure, Secondary , Vibration
18.
Inorg Chem ; 44(16): 5562-70, 2005 Aug 08.
Article in English | MEDLINE | ID: mdl-16060605

ABSTRACT

[NEt(4)][FeCl(4)], [P(C(6)H(5))(4)][FeCl(4)], and [NEt(4)](2)[Fe(2)S(2)Cl(4)] have been examined using (57)Fe nuclear resonance vibrational spectroscopy (NRVS). These complexes serve as simple models for Fe-S clusters in metalloproteins. The (57)Fe partial vibrational density of states (PVDOS) spectra were interpreted by computation of the normal modes assuming Urey-Bradley force fields, using additional information from infrared and Raman spectra. Previously published force constants were used as initial values; the new constraints from NRVS frequencies and amplitudes were then used to refine the force field parameters in a nonlinear least-squares analysis. The normal-mode calculations were able to quantitatively reproduce both the frequencies and the amplitudes of the intramolecular-mode (57)Fe PVDOS. The optimized force constants for bending, stretching, and nonbonded interactions agree well with previously reported values. In addition, the NRVS technique also allowed clear observation of anion-cation lattice modes below 100 cm(-1) that are nontrivial to observe by conventional spectroscopies. These features were successfully reproduced, either by assuming whole-body motions of point-mass anions and cations or by simulations using all of the atoms in the unit cell. The advantages of a combined NRVS, Raman, and IR approach to characterization of Fe-S complexes are discussed.


Subject(s)
Iron Compounds/chemistry , Metalloproteins/chemistry , Algorithms , Models, Molecular , Molecular Structure , Spectroscopy, Mossbauer , Spectrum Analysis, Raman , Thermodynamics
19.
Biophys Chem ; 105(2-3): 721-41, 2003 Sep.
Article in English | MEDLINE | ID: mdl-14499929

ABSTRACT

We summarize a series of experimental results made with the newly developed high resolution X-ray scattering (IXS) instrument on two pure lipid bilayers, including dimyristoylphosphatidylcholine (DMPC) and dilauroylphosphatidylcholine (DLPC) in both gel and liquid crystal phases, and lipid bilayers containing cholesterol. By analyzing the IXS data based on the generalized three effective eigenmode model (GTEE), we obtain dispersion relations of the high frequency density oscillations (phonons) of lipid molecules in these bilayers. We then compare the dispersion relations of pure lipid bilayers of different chain lengths among themselves and the dispersion relations of pure lipid bilayers with those of the cholesterol containing bilayers. We also compare our experimental results with collective dynamics data generated by computer molecular dynamics (MD) simulations for dipalmitoylphosphatidylcholine (DPPC) in gel phase and DMPC in liquid crystal phase.


Subject(s)
Lipid Bilayers/chemistry , Motion , X-Ray Diffraction/methods , Equipment Design , Models, Theoretical , Phosphatidylcholines/chemistry , Scattering, Radiation , X-Ray Diffraction/instrumentation
20.
Biophys J ; 84(6): 3767-76, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12770883

ABSTRACT

We investigated the application of inelastic x-ray scattering (IXS) to lipid bilayers. This technique directly measures the dynamic structure factor S(q,omega) which is the space-time Fourier transform of the electron density correlation function of the measured system. For a multiatomic system, the analysis of S(q,omega) is usually complicated. But for multiple bilayers of lipid, S(q,omega) is dominated by chain-chain correlations within individual bilayers. Thus IXS provides a unique probe for the collective dynamics of lipid chains in a bilayer that cannot be obtained by any other method. IXS of dimyristoyl phosphatidylcholine and dimyristoyl phosphatidylcholine + cholesterol at two different concentrations were measured. S(q,omega) was analyzed by three-mode hydrodynamic equations, including a thermal diffusive mode and two propagating acoustic modes. We obtained the dispersion curves for the phonons that represent the collective in-plane excitations of lipid chains. The effect of cholesterol on chain dynamics was detected. Our analysis shows the importance of having a high instrument resolution as well as the requirement of sufficient signal-to-noise ratio to obtain meaningful results from such an IXS experiment. The requirement on signal-to-noise also applies to molecular dynamics simulations.


Subject(s)
Algorithms , Crystallography, X-Ray/methods , Dimyristoylphosphatidylcholine/chemistry , Lipid Bilayers/chemistry , Membrane Fluidity , Elasticity , Macromolecular Substances , Molecular Conformation , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...