Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 377(6609): 940-951, 2022 08 26.
Article in English | MEDLINE | ID: mdl-36007020

ABSTRACT

Literary and archaeological sources have preserved a rich history of Southern Europe and West Asia since the Bronze Age that can be complemented by genetics. Mycenaean period elites in Greece did not differ from the general population and included both people with some steppe ancestry and others, like the Griffin Warrior, without it. Similarly, people in the central area of the Urartian Kingdom around Lake Van lacked the steppe ancestry characteristic of the kingdom's northern provinces. Anatolia exhibited extraordinary continuity down to the Roman and Byzantine periods, with its people serving as the demographic core of much of the Roman Empire, including the city of Rome itself. During medieval times, migrations associated with Slavic and Turkic speakers profoundly affected the region.


Subject(s)
Human Migration , Population , Archaeology , Asia , Europe , Genetic Variation , Greece , History, Ancient , History, Medieval , Human Migration/history , Humans , Population/genetics
2.
Science ; 377(6609): 982-987, 2022 08 26.
Article in English | MEDLINE | ID: mdl-36007054

ABSTRACT

We present the first ancient DNA data from the Pre-Pottery Neolithic of Mesopotamia (Southeastern Turkey and Northern Iraq), Cyprus, and the Northwestern Zagros, along with the first data from Neolithic Armenia. We show that these and neighboring populations were formed through admixture of pre-Neolithic sources related to Anatolian, Caucasus, and Levantine hunter-gatherers, forming a Neolithic continuum of ancestry mirroring the geography of West Asia. By analyzing Pre-Pottery and Pottery Neolithic populations of Anatolia, we show that the former were derived from admixture between Mesopotamian-related and local Epipaleolithic-related sources, but the latter experienced additional Levantine-related gene flow, thus documenting at least two pulses of migration from the Fertile Crescent heartland to the early farmers of Anatolia.


Subject(s)
Farmers , Gene Flow , Human Migration , Archaeology , Armenia , Cyprus , DNA, Ancient , Farmers/history , History, Ancient , Human Migration/history , Mesopotamia
3.
Science ; 377(6609): eabm4247, 2022 08 26.
Article in English | MEDLINE | ID: mdl-36007055

ABSTRACT

By sequencing 727 ancient individuals from the Southern Arc (Anatolia and its neighbors in Southeastern Europe and West Asia) over 10,000 years, we contextualize its Chalcolithic period and Bronze Age (about 5000 to 1000 BCE), when extensive gene flow entangled it with the Eurasian steppe. Two streams of migration transmitted Caucasus and Anatolian/Levantine ancestry northward, and the Yamnaya pastoralists, formed on the steppe, then spread southward into the Balkans and across the Caucasus into Armenia, where they left numerous patrilineal descendants. Anatolia was transformed by intra-West Asian gene flow, with negligible impact of the later Yamnaya migrations. This contrasts with all other regions where Indo-European languages were spoken, suggesting that the homeland of the Indo-Anatolian language family was in West Asia, with only secondary dispersals of non-Anatolian Indo-Europeans from the steppe.


Subject(s)
Gene Flow , Genome, Human , Human Migration , Asia , Balkan Peninsula , Europe , History, Ancient , Human Migration/history , Humans , White People/genetics
4.
Nature ; 599(7883): 41-46, 2021 11.
Article in English | MEDLINE | ID: mdl-34671160

ABSTRACT

We are a group of archaeologists, anthropologists, curators and geneticists representing diverse global communities and 31 countries. All of us met in a virtual workshop dedicated to ethics in ancient DNA research held in November 2020. There was widespread agreement that globally applicable ethical guidelines are needed, but that recent recommendations grounded in discussion about research on human remains from North America are not always generalizable worldwide. Here we propose the following globally applicable guidelines, taking into consideration diverse contexts. These hold that: (1) researchers must ensure that all regulations were followed in the places where they work and from which the human remains derived; (2) researchers must prepare a detailed plan prior to beginning any study; (3) researchers must minimize damage to human remains; (4) researchers must ensure that data are made available following publication to allow critical re-examination of scientific findings; and (5) researchers must engage with other stakeholders from the beginning of a study and ensure respect and sensitivity to stakeholder perspectives. We commit to adhering to these guidelines and expect they will promote a high ethical standard in DNA research on human remains going forward.


Subject(s)
Cadaver , DNA, Ancient/analysis , Guidelines as Topic , Human Genetics/ethics , Internationality , Molecular Biology/ethics , American Indian or Alaska Native , Anthropology/ethics , Archaeology/ethics , Community-Institutional Relations , Humans , Indigenous Peoples , Stakeholder Participation , Translations
5.
Nat Commun ; 11(1): 1189, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32132541

ABSTRACT

Changes in potential regulatory elements are thought to be key drivers of phenotypic divergence. However, identifying changes to regulatory elements that underlie human-specific traits has proven very challenging. Here, we use 63 reconstructed and experimentally measured DNA methylation maps of ancient and present-day humans, as well as of six chimpanzees, to detect differentially methylated regions that likely emerged in modern humans after the split from Neanderthals and Denisovans. We show that genes associated with face and vocal tract anatomy went through particularly extensive methylation changes. Specifically, we identify widespread hypermethylation in a network of face- and voice-associated genes (SOX9, ACAN, COL2A1, NFIX and XYLT1). We propose that these repression patterns appeared after the split from Neanderthals and Denisovans, and that they might have played a key role in shaping the modern human face and vocal tract.


Subject(s)
DNA Methylation , DNA, Ancient , Face/anatomy & histology , Phenotype , Phonation/genetics , Adult , Aged , Animals , Cells, Cultured , Child , Chondrocytes , Evolution, Molecular , Female , Gene Regulatory Networks , Genetic Speciation , Humans , Larynx/anatomy & histology , Male , Middle Aged , Neanderthals/genetics , Pan troglodytes/genetics , Primary Cell Culture , Tongue/anatomy & histology , Vocal Cords/anatomy & histology , Vocalization, Animal
6.
Nature ; 555(7695): 197-203, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29466330

ABSTRACT

Farming was first introduced to Europe in the mid-seventh millennium bc, and was associated with migrants from Anatolia who settled in the southeast before spreading throughout Europe. Here, to understand the dynamics of this process, we analysed genome-wide ancient DNA data from 225 individuals who lived in southeastern Europe and surrounding regions between 12000 and 500 bc. We document a west-east cline of ancestry in indigenous hunter-gatherers and, in eastern Europe, the early stages in the formation of Bronze Age steppe ancestry. We show that the first farmers of northern and western Europe dispersed through southeastern Europe with limited hunter-gatherer admixture, but that some early groups in the southeast mixed extensively with hunter-gatherers without the sex-biased admixture that prevailed later in the north and west. We also show that southeastern Europe continued to be a nexus between east and west after the arrival of farmers, with intermittent genetic contact with steppe populations occurring up to 2,000 years earlier than the migrations from the steppe that ultimately replaced much of the population of northern Europe.


Subject(s)
Farmers/history , Genome, Human/genetics , Genomics , Human Migration/history , Agriculture/history , Asia/ethnology , DNA, Ancient , Europe , Female , Genetics, Population , Grassland , History, Ancient , Humans , Male , Sex Distribution
7.
PLoS One ; 10(6): e0129102, 2015.
Article in English | MEDLINE | ID: mdl-26086078

ABSTRACT

The invention and development of next or second generation sequencing methods has resulted in a dramatic transformation of ancient DNA research and allowed shotgun sequencing of entire genomes from fossil specimens. However, although there are exceptions, most fossil specimens contain only low (~ 1% or less) percentages of endogenous DNA. The only skeletal element for which a systematically higher endogenous DNA content compared to other skeletal elements has been shown is the petrous part of the temporal bone. In this study we investigate whether (a) different parts of the petrous bone of archaeological human specimens give different percentages of endogenous DNA yields, (b) there are significant differences in average DNA read lengths, damage patterns and total DNA concentration, and (c) it is possible to obtain endogenous ancient DNA from petrous bones from hot environments. We carried out intra-petrous comparisons for ten petrous bones from specimens from Holocene archaeological contexts across Eurasia dated between 10,000-1,800 calibrated years before present (cal. BP). We obtained shotgun DNA sequences from three distinct areas within the petrous: a spongy part of trabecular bone (part A), the dense part of cortical bone encircling the osseous inner ear, or otic capsule (part B), and the dense part within the otic capsule (part C). Our results confirm that dense bone parts of the petrous bone can provide high endogenous aDNA yields and indicate that endogenous DNA fractions for part C can exceed those obtained for part B by up to 65-fold and those from part A by up to 177-fold, while total endogenous DNA concentrations are up to 126-fold and 109-fold higher for these comparisons. Our results also show that while endogenous yields from part C were lower than 1% for samples from hot (both arid and humid) parts, the DNA damage patterns indicate that at least some of the reads originate from ancient DNA molecules, potentially enabling ancient DNA analyses of samples from hot regions that are otherwise not amenable to ancient DNA analyses.


Subject(s)
DNA/isolation & purification , Ear, Inner/chemistry , Fossils , Petrous Bone/chemistry , Archaeology , DNA Damage , Humans , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...