Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Am J Physiol Gastrointest Liver Physiol ; 316(1): G217-G227, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30475062

ABSTRACT

This study aimed to establish mechanistic links between the prolonged intake of desloratadine, a common H1 receptor blocker (i.e., antihistamine), and development of obesity and metabolic syndrome. Male Sprague-Dawley rats were treated for 16 wk with desloratadine. We analyzed the dynamics of body weight gain, tissue fat accumulation/density, contractility of isolated mesenteric lymphatic vessels, and levels of blood lipids, glucose, and insulin, together with parameters of liver function. Prolonged intake of desloratadine induced development of an obesity-like phenotype and signs of metabolic syndrome. These alterations in the body included excessive weight gain, increased density of abdominal subcutaneous fat and intracapsular brown fat, high blood triglycerides with an indication of their rerouting toward portal blood, high HDL, high fasting blood glucose with normal fasting and nonfasting insulin levels (insulin resistance), high liver/body weight ratio, and liver steatosis (fatty liver). These changes were associated with dysfunction of mesenteric lymphatic vessels, specifically high lymphatic tone and resistance to flow together with diminished tonic and abolished phasic responses to increases in flow, (i.e., greatly diminished adaptive reserves to respond to postprandial increases in lymph flow). The role of nitric oxide in this flow-dependent adaptation was abolished, with remnants of these responses controlled by lymphatic vessel-derived histamine. Our current data, considered together with reports in the literature, support the notion that millions of the United States population are highly likely affected by underevaluated, lymphatic-related side effects of antihistamines and may develop obesity and metabolic syndrome due to the prolonged intake of this medication. NEW & NOTEWORTHY Prolonged intake of desloratadine induced development of obesity and metabolic syndrome associated with dysfunction of mesenteric lymphatic vessels, high lymphatic tone, and resistance to flow together with greatly diminished adaptive reserves to respond to postprandial increases in lymph flow. Data support the notion that millions of the USA population are highly likely affected by underevaluated, lymphatic-related side effects of antihistamines and may develop obesity and metabolic syndrome due to the prolonged intake of this medication.


Subject(s)
Fatty Liver/drug therapy , Loratadine/analogs & derivatives , Lymphatic Vessels/drug effects , Metabolic Syndrome/etiology , Obesity/etiology , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Fatty Liver/complications , Insulin Resistance/physiology , Lipids/blood , Loratadine/pharmacology , Lymphatic Vessels/metabolism , Male , Rats , Rats, Sprague-Dawley , Weight Gain/drug effects
3.
Sci Rep ; 8(1): 12220, 2018 08 15.
Article in English | MEDLINE | ID: mdl-30111800

ABSTRACT

The biliary tree is an essential component of transplantable human liver tissue. Despite recent advances in liver tissue engineering, attempts at re-creating the intrahepatic biliary tree have not progressed significantly. The finer branches of the biliary tree are structurally and functionally complex and heterogeneous and require harnessing innate developmental processes for their regrowth. Here we demonstrate the ability of decellularized liver extracellular matrix (dECM) hydrogels to induce the in vitro formation of complex biliary networks using encapsulated immortalized mouse small biliary epithelial cells (cholangiocytes). This phenomenon is not observed using immortalized mouse large cholangiocytes, or with purified collagen 1 gels or Matrigel. We also show phenotypic stability via immunostaining for specific cholangiocyte markers. Moreover, tight junction formation and maturation was observed to occur between cholangiocytes, exhibiting polarization and transporter activity. To better define the mechanism of duct formation, we utilized three fluorescently labeled, but otherwise identical populations of cholangiocytes. The cells, in a proximity dependent manner, either branch out clonally, radiating from a single nucleation point, or assemble into multi-colored structures arising from separate populations. These findings present liver dECM as a promising biomaterial for intrahepatic bile duct tissue engineering and as a tool to study duct remodeling in vitro.


Subject(s)
Biliary Tract/metabolism , Extracellular Matrix/metabolism , Liver/metabolism , Animals , Bile Ducts/cytology , Bile Ducts/metabolism , Bile Ducts, Intrahepatic/cytology , Biliary Tract/cytology , Cell Line , Epithelial Cells/cytology , Female , Hydrogels/pharmacology , Liver/cytology , Mice , Swine
4.
Cardiovasc Res ; 111(1): 74-83, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27131506

ABSTRACT

AIMS: Stress response, in terms of activation of stress factors, is known to cause obesity and coronary heart disease such as atherosclerosis in human. However, the underlying mechanism(s) of these pathways are not known. Here, we investigated the effect of heat shock factor-1 (HSF-1) on atherosclerosis. METHODS AND RESULTS: HSF-1 and low-density lipoprotein receptor (LDLr) double knockout (HSF-1(-/-)/LDLr(-/-)) and LDLr knockout (LDLr(-/-)) mice were fed with atherogenic western diet (WD) for 12 weeks. WD-induced weight gain and atherosclerotic lesion in aortic arch and carotid regions were reduced in HSF-1(-/-)/LDLr(-/-) mice, compared with LDLr(-/-) mice. Also, repression of PPAR-γ2 and AMPKα expression in adipose tissue, low hepatic steatosis, and lessened plasma adiponectins and lipoproteins were observed. In HSF-1(-/-)/LDLr(-/-) liver, higher cholesterol 7α-hydroxylase (CYP7A1) and multidrug transporter [MDR1/P-glycoprotein (P-gp)] gene expressions were observed, consistent with higher bile acid transport and larger hepatic bile ducts. Luciferase reporter gene assays with wild-type CYP7A1 and MDR1 promoters showed lesser luminescence than with mutant promoters (HSF-1 binding site deleted), indicating that HSF-1 binding is repressive of CYP7A1 and MDR1 gene expressions. CONCLUSION: HSF-1 ablation not only eliminates heat shock response, but it also transcriptionally up-regulates CYP7A1 and MDR1/P-gp axis in WD-diet fed HSF-1(-/-)/LDLr(-/-) mice to reduce atherosclerosis.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/metabolism , Aortic Diseases/prevention & control , Atherosclerosis/prevention & control , Carotid Artery Diseases/prevention & control , Cholesterol 7-alpha-Hydroxylase/metabolism , DNA-Binding Proteins/deficiency , Liver/enzymology , Transcription Factors/deficiency , AMP-Activated Protein Kinases/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , Adipose Tissue/enzymology , Animals , Aorta/metabolism , Aorta/pathology , Aortic Diseases/enzymology , Aortic Diseases/genetics , Aortic Diseases/pathology , Atherosclerosis/enzymology , Atherosclerosis/genetics , Atherosclerosis/pathology , Binding Sites , Carotid Arteries/metabolism , Carotid Arteries/pathology , Carotid Artery Diseases/enzymology , Carotid Artery Diseases/genetics , Carotid Artery Diseases/pathology , Cells, Cultured , Cholesterol 7-alpha-Hydroxylase/genetics , DNA-Binding Proteins/genetics , Diet, Western , Disease Models, Animal , Female , Genetic Predisposition to Disease , Heat Shock Transcription Factors , Male , Mice, Inbred C57BL , Mice, Knockout , Mutation , PPAR gamma/metabolism , Phenotype , Plaque, Atherosclerotic , Promoter Regions, Genetic , Receptors, LDL/deficiency , Receptors, LDL/genetics , Signal Transduction , Time Factors , Transcription Factors/genetics , Transcription, Genetic , Transfection , Up-Regulation
5.
Lab Invest ; 92(2): 282-94, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22064319

ABSTRACT

Although large cholangiocytes exert their functions by activation of cyclic adenosine 3',5'-monophosphate (cAMP), Ca(2+)-dependent signaling regulates the function of small cholangiocytes. Histamine interacts with four receptors, H1-H4HRs. H1HR acts by Gαq activating IP(3)/Ca(2+), whereas H2HR activates Gα(s) stimulating cAMP. We hypothesize that histamine increases biliary growth by activating H1HR on small and H2HR on large cholangiocytes. The expression of H1-H4HRs was evaluated in liver sections, isolated and cultured (normal rat intrahepatic cholangiocyte culture (NRIC)) cholangiocytes. In vivo, normal rats were treated with histamine or H1-H4HR agonists for 1 week. We evaluated: (1) intrahepatic bile duct mass (IBDM); (2) the effects of histamine, H1HR or H2HR agonists on NRIC proliferation, IP(3) and cAMP levels and PKCα and protein kinase A (PKA) phosphorylation; and (3) PKCα silencing on H1HR-stimulated NRIC proliferation. Small and large cholangiocytes express H1-H4HRs. Histamine and the H1HR agonist increased small IBDM, whereas histamine and the H2HR agonist increased large IBDM. H1HR agonists stimulated IP(3) levels, as well as PKCα phosphorylation and NRIC proliferation, whereas H2HR agonists increased cAMP levels, as well as PKA phosphorylation and NRIC proliferation. The H1HR agonist did not increase proliferation in PKCα siRNA-transfected NRICs. The activation of differential signaling mechanisms targeting small and large cholangiocytes is important for repopulation of the biliary epithelium during pathologies affecting different-sized bile ducts.


Subject(s)
Bile Ducts/drug effects , Calcium/metabolism , Cell Proliferation/drug effects , Cyclic AMP/metabolism , Histamine/pharmacology , Inositol Phosphates/metabolism , Signal Transduction/drug effects , Animals , Bile Ducts/cytology , Bile Ducts/enzymology , Bile Ducts/metabolism , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/metabolism , Male , Phosphorylation , Protein Kinase C-alpha/metabolism , Rats , Rats, Inbred F344
6.
Lab Invest ; 89(4): 456-69, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19204666

ABSTRACT

Rat and human biliary epithelium is morphologically and functionally heterogeneous. As no information exists on the heterogeneity of the murine intrahepatic biliary epithelium, and with increased usage of transgenic mouse models to study liver disease pathogenesis, we sought to evaluate the morphological, secretory, and proliferative phenotypes of small and large bile ducts and purified cholangiocytes in normal and cholestatic mouse models. For morphometry, normal and bile duct ligation (BDL) mouse livers (C57/BL6) were dissected into blocks of 2-4 microm(2), embedded in paraffin, sectioned, and stained with hematoxylin and eosin. Sizes of bile ducts and cholangiocytes were evaluated by using SigmaScan to measure the diameters of bile ducts and cholangiocytes. In small and large normal and BDL cholangiocytes, we evaluated the expression of cholangiocyte-specific markers, keratin-19 (KRT19), secretin receptor (SR), cystic fibrosis transmembrane conductance regulator (CFTR), and chloride bicarbonate anion exchanger 2 (Cl(-)/HCO(3)(-) AE2) by immunofluorescence and western blot; and intracellular cyclic adenosine 3',5'-monophosphate (cAMP) levels and chloride efflux in response to secretin (100 nM). To evaluate cholangiocyte proliferative responses after BDL, small and large cholangiocytes were isolated from BDL mice. The proliferation status was determined by analysis of the cell cycle by fluorescence-activated cell sorting, and bile duct mass was determined by the number of KRT19-positive bile ducts in liver sections. In situ morphometry established that the biliary epithelium of mice is morphologically heterogeneous, with smaller cholangiocytes lining smaller bile ducts and larger cholangiocytes lining larger ducts. Both small and large cholangiocytes express KRT19 and only large cholangiocytes from normal and BDL mice express SR, CFTR, and Cl(-)/HCO(3)(-) exchanger and respond to secretin with increased cAMP levels and chloride efflux. Following BDL, only large mouse cholangiocytes proliferate. We conclude that similar to rats, mouse intrahepatic biliary epithelium is morphologically and functionally heterogeneous. The mouse is therefore a suitable model for defining the heterogeneity of the biliary tree.


Subject(s)
Bile Ducts, Intrahepatic/physiology , Cell Cycle/physiology , Cell Proliferation , Cell Size , Animals , Antigens, Differentiation/metabolism , Bile Ducts, Intrahepatic/cytology , Cholestasis, Intrahepatic/pathology , Epithelium/physiology , Male , Mice , Mice, Inbred C57BL
7.
Stem Cells ; 26(8): 2104-13, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18511600

ABSTRACT

Liver injury activates quiescent hepatic stellate cells (Q-HSC) to proliferative myofibroblasts. Accumulation of myofibroblastic hepatic stellate cells (MF-HSC) sometimes causes cirrhosis and liver failure. However, MF-HSC also promote liver regeneration by producing growth factors for oval cells, bipotent progenitors of hepatocytes and cholangiocytes. Genes that are expressed by primary hepatic stellate cell (HSC) isolates overlap those expressed by oval cells, and hepatocytic and ductular cells emerge when HSC are cultured under certain conditions. We evaluated the hypothesis that HSC are a type of oval cell and, thus, capable of generating hepatocytes to regenerate injured livers. Because Q-HSC express glial fibrillary acidic protein (GFAP), we crossed mice in which GFAP promoter elements regulated Cre-recombinase with ROSA-loxP-stop-loxP-green fluorescent protein (GFP) mice to generate GFAP-Cre/GFP double-transgenic mice. These mice were fed methionine choline-deficient, ethionine-supplemented diets to activate and expand HSC and oval cell populations. GFP(+) progeny of GFAP-expressing precursors were characterized by immunohistochemistry. Basal expression of mesenchymal markers was negligible in GFAP(+)Q-HSC. When activated by liver injury or culture, HSC downregulated expression of GFAP but remained GFP(+); they became highly proliferative and began to coexpress markers of mesenchyme and oval cells. These transitional cells disappeared as GFP-expressing hepatocytes emerged, began to express albumin, and eventually repopulated large areas of the hepatic parenchyma. Ductular cells also expressed GFAP and GFP, but their proliferative activity did not increase in this model. These findings suggest that HSC are a type of oval cell that transitions through a mesenchymal phase before differentiating into hepatocytes during liver regeneration. Disclosure of potential conflicts of interest is found at the end of this article.


Subject(s)
Epithelial Cells/cytology , Hepatocytes/cytology , Liver Regeneration/physiology , Stem Cells/cytology , Animals , Cell Lineage , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Immunohistochemistry/methods , Liver Cirrhosis/pathology , Mesoderm/metabolism , Mice , Mice, Transgenic , Promoter Regions, Genetic
8.
Lab Invest ; 87(9): 914-26, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17618297

ABSTRACT

The role of sensory innervation in the regulation of liver physiology and the pathogenesis of cholestatic liver disease are undefined. Biliary proliferation has been shown to be coordinately controlled by parasympathetic and sympathetic innervation of the liver. The aim of our study was to address the role of the sensory neuropeptide calcitonin gene-related peptide (alpha-CGRP) in the regulation of cholangiocyte proliferation during cholestasis induced by extrahepatic bile duct obstruction (BDL). Our study utilized a knockout (KO) mouse model, which lacks the sensory neuropeptide alpha-CGRP. Wild-type (WT) and alpha-CGRP KO mice were subjected to sham surgery or BDL for 3 and 7 days. In addition, immediately after BDL, WT and KO mice were administered the CGRP receptor antagonist (CGRP(8-37)) for 3 and 7 days by osmotic minipumps. Liver sections and isolated cholangiocytes were evaluated for proliferation markers. Isolated WT BDL (3 days) cholangiocytes were stimulated with alpha- and beta-CGRP and evaluated for proliferation and cAMP-mediated signaling. Lack of alpha-CGRP inhibits cholangiocyte proliferation induced by BDL at both 3 and 7 days. BDL-induced cholangiocyte proliferation in WT mice was associated with increases of circulating alpha-CGRP levels. In vitro, alpha- and beta-CGRP stimulated proliferation in purified BDL cholangiocytes, induced elevation of cAMP levels, and stimulated the activation of cAMP-dependent protein kinase A and cAMP response element binding protein DNA binding. In conclusion, sensory innervation of the liver and biliary expression of alpha-CGRP play an important role in the regulation of cholangiocyte proliferation during cholestasis.


Subject(s)
Bile Ducts, Intrahepatic/metabolism , Calcitonin Gene-Related Peptide/metabolism , Cholangitis/physiopathology , Cholestasis, Extrahepatic/physiopathology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Animals , Bile Ducts, Intrahepatic/pathology , Bile Ducts, Intrahepatic/physiopathology , Biliary Tract/cytology , Calcitonin Gene-Related Peptide/blood , Cell Proliferation , Cholangitis/metabolism , Disease Models, Animal , Male , Mice , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...