Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(1): 1767-1778, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38113456

ABSTRACT

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) are highly promising nanomaterials for various electronic devices such as field-effect transistors, junction diodes, tunneling devices, and, more recently, memristors. 2D MoSe2 stands out for having high electrical conductivity, charge carrier mobility, and melting point. While these features make it particularly appropriate as a switching layer in memristive devices, reliable and scalable production of large-area 2D MoSe2 still represents a challenge. In this study, we manufacture 2D MoSe2 films by atmospheric-pressure chemical vapor deposition and investigate them on the atomic scale. We selected and transferred MoSe2 bilayer to serve as a switching layer between asymmetric Au-Cu electrodes in miniaturized crossbar vertical memristors. The electrochemical metallization devices showed forming-free, bipolar resistive switching at low voltages, with clearly identifiable nonvolatile states. Other than low-power neuromorphic computing, low switching voltages approaching the range of biological action potentials could unlock hybrid biological interfaces.

2.
ACS Appl Mater Interfaces ; 15(12): 15498-15508, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36940316

ABSTRACT

A simple and effective preparation of solution-processed chalcogenide thermoelectric materials is described. First, PbTe, PbSe, and SnSe were prepared by gram-scale colloidal synthesis relying on the reaction between metal acetates and diphenyl dichalcogenides in hexadecylamine solvent. The resultant phase-pure chalcogenides consist of highly crystalline and defect-free particles with distinct cubic-, tetrapod-, and rod-like morphologies. The powdered PbTe, PbSe, and SnSe products were subjected to densification by spark plasma sintering (SPS), affording dense pellets of the respective chalcogenides. Scanning electron microscopy shows that the SPS-derived pellets exhibit fine nano-/micro-structures dictated by the original morphology of the key constituting particles, while the powder X-ray diffraction and electron microscopy analyses confirm that the SPS-derived pellets are phase-pure materials, preserving the structure of the colloidal synthesis products. The resultant solution-processed PbTe, PbSe, and SnSe exhibit low thermal conductivity, which might be due to the enhanced phonon scattering developed over fine microstructures. For undoped n-type PbTe and p-type SnSe samples, an expected moderate thermoelectric performance is achieved. In contrast, an outstanding figure-of-merit of 0.73 at 673 K was achieved for undoped n-type PbSe outperforming, the majority of the optimized PbSe-based thermoelectric materials. Overall, our findings facilitate the design of efficient solution-processed chalcogenide thermoelectrics.

3.
Sensors (Basel) ; 23(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36850429

ABSTRACT

Large-scale production of graphene nanosheets (GNSs) has led to the availability of solution-processable GNSs on the commercial scale. The controlled vacuum filtration method is a scalable process for the preparation of wafer-scale films of GNSs, which can be used for gas sensing applications. Here, we demonstrate the use of this deposition method to produce functional gas sensors, using a chemiresistor structure from GNS solution-based techniques. The GNS suspension was prepared by liquid-phase exfoliation (LPE) and transferred to a polyvinylidene fluoride (PVDF) membrane. The effect of non-covalent functionalization with Co-porphyrin and Fe-phthalocyanines on the sensor properties was studied. The pristine and functionalized GNS films were characterized using different techniques such as Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and electrical characterizations. The morphological and spectroscopic analyses both confirm that the molecules (Co-porphyrin and Fe-phthalocyanine) were successfully adsorbed onto the GNSs surface through π-π interactions. The chemiresistive sensor response of functionalized GNSs toward the low concentrations of nitrogen dioxide (NO2) (0.5-2 ppm) was studied and compared with those of the film of pristine GNSs. The tests on the sensing performance clearly showed sensitivity to a low concentration of NO2 (5 ppm). Furthermore, the chemical modification of GNSs significantly improves NO2 sensing performance compared to the pristine GNSs. The sensor response can be modulated by the type of adsorbed molecules. Indeed, Co-Por exhibited negative responsiveness (the response of Co-Por-GNS sensors and pristine GNS devices was 13.1% and 15.6%, respectively, after exposure to 0.5 ppm of NO2). Meanwhile, Fe-Phc-GNSs induced the opposite behavior resulting in an increase in the sensor response (the sensitivity was 8.3% and 7.8% of Fe-Phc-GNSs and pristine GNSs, respectively, at 0.5 ppm NO2 gas).

4.
Micromachines (Basel) ; 14(1)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36677276

ABSTRACT

Graphene has unique properties that can be exploited for radiofrequency applications. Its characterization is key for the development of new graphene devices, circuits, and systems. Due to the two-dimensional nature of graphene, there are challenges in the methodology to extract relevant characteristics that are necessary for device design. In this work, the Thru-Reflect-Line (TRL) calibration was evaluated as a solution to extract graphene's electrical characteristics from 1 GHz to 65 GHz, where the calibration structures' requirements were analyzed. It was demonstrated that thick metallic contacts, a low-loss substrate, and a short and thin contact are necessary to characterize graphene. Furthermore, since graphene's properties are dependent on the polarization voltage applied, a backgate has to be included so that graphene can be characterized for different chemical potentials. Such characterization is mandatory for the design of graphene RF electronics and can be used to extract characteristics such as graphene's resistance, quantum capacitance, and kinetic inductance. Finally, the proposed structure was characterized, and graphene's resistance and quantum capacitance were extracted.

5.
ACS Sens ; 8(2): 640-654, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36657739

ABSTRACT

Identifying grape varieties in wine, related products, and raw materials is of great interest for enology and to ensure its authenticity. However, these matrices' complexity and low DNA content make this analysis particularly challenging. Integrating DNA analysis with 2D materials, such as graphene, offers an advantageous pathway toward ultrasensitive DNA detection. Here, we show that monolayer graphene provides an optimal test bed for nucleic acid detection with single-base resolution. Graphene's ultrathinness creates a large surface area with quantum confinement in the perpendicular direction that, upon functionalization, provides multiple sites for DNA immobilization and efficient detection. Its highly conjugated electronic structure, high carrier mobility, zero-energy band gap with the associated gating effect, and chemical inertness explain graphene's superior performance. For the first time, we present a DNA-based analytic tool for grapevine varietal discrimination using an integrated portable biosensor based on a monolayer graphene field-effect transistor array. The system comprises a wafer-scale fabricated graphene chip operated under liquid gating and connected to a miniaturized electronic readout. The platform can distinguish closely related grapevine varieties, thanks to specific DNA probes immobilized on the sensor, demonstrating high specificity even for discriminating single-nucleotide polymorphisms, which is hard to achieve with a classical end-point polymerase chain reaction or quantitative polymerase chain reaction. The sensor was operated in ultralow DNA concentrations, with a dynamic range of 1 aM to 0.1 nM and an attomolar detection limit of ∼0.19 aM. The reported biosensor provides a promising way toward developing decentralized analytical tools for tracking wine authenticity at different points of the food value chain, enabling data transmission and contributing to the digitalization of the agro-food industry.


Subject(s)
Biosensing Techniques , Graphite , Graphite/chemistry , DNA/chemistry , DNA Probes , Polymerase Chain Reaction
6.
Biosens Bioelectron ; 222: 115006, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36538869

ABSTRACT

Biosensors based on graphene field-effect transistors have become a promising tool for detecting a broad range of analytes. However, their performance is substantially affected by the functionalization protocol. In this work, we use a controlled in-vacuum physical method for the covalent functionalization of graphene to construct ultrasensitive aptamer-based biosensors (aptasensors) able to detect hepatitis C virus core protein. These devices are highly specific and robust, achieving attomolar detection of the viral protein in human blood plasma. Such an improved sensitivity is rationalized by theoretical calculations showing that induced polarization at the graphene interface, caused by the proximity of covalently bound molecular probe, modulates the charge balance at the graphene/aptamer interface. This charge balance causes a net shift of the Dirac cone providing enhanced sensitivity for the attomolar detection of the target proteins. Such an unexpected effect paves the way for using this kind of graphene-based functionalized platforms for ultrasensitive and real-time diagnostics of different diseases.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Graphite , Hepatitis C , Humans , Viral Core Proteins , Hepatitis C/diagnosis
7.
Materials (Basel) ; 15(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36556609

ABSTRACT

Thin-film thermoelectrics (TEs) with a thickness of a few microns present an attractive opportunity to power the internet of things (IoT). Here, we propose screen printing as an industry-relevant technology to fabricate TE thin films from colloidal PbSe quantum dots (QDs). Monodisperse 13 nm-sized PbSe QDs with spherical morphology were synthesized through a straightforward heating-up method. The cubic-phase PbSe QDs with homogeneous chemical composition allowed the formulation of a novel ink to fabricate 2 µm-thick thin films through robust screen printing followed by rapid annealing. A maximum Seebeck coefficient of 561 µV K-1 was obtained at 143 °C and the highest electrical conductivity of 123 S m-1 was reached at 197 °C. Power factor calculations resulted in a maximum value of 2.47 × 10-5 W m-1 K-2 at 143 °C. To the best of our knowledge, the observed Seebeck coefficient value is the highest reported for TE thin films fabricated by screen printing. Thus, this study highlights that increased Seebeck coefficients can be obtained by using QD building blocks owing to quantum confinement.

8.
J Nanobiotechnology ; 20(1): 495, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36424623

ABSTRACT

Detecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and therapeutics. However, neurotransmitter sensors for real-world applications must reliably detect low concentrations of target analytes from small volume working samples. Herein, a platform for robust and ultrasensitive detection of dopamine, an essential neurotransmitter that underlies several brain disorders, based on graphene multitransistor arrays (gMTAs) functionalized with a selective DNA aptamer is presented. High-yield scalable methodologies optimized at the wafer level were employed to integrate multiple graphene transistors on small-size chips (4.5 × 4.5 mm). The multiple sensor array configuration permits independent and simultaneous replicate measurements of the same sample that produce robust average data, reducing sources of measurement variability. This procedure allowed sensitive and reproducible dopamine detection in ultra-low concentrations from small volume samples across physiological buffers and high ionic strength complex biological samples. The obtained limit-of-detection was 1 aM (10-18) with dynamic detection ranges spanning 10 orders of magnitude up to 100 µM (10-8), and a 22 mV/decade peak sensitivity in artificial cerebral spinal fluid. Dopamine detection in dopamine-depleted brain homogenates spiked with dopamine was also possible with a LOD of 1 aM, overcoming sensitivity losses typically observed in ion-sensitive sensors in complex biological samples. Furthermore, we show that our gMTAs platform can detect minimal changes in dopamine concentrations in small working volume samples (2 µL) of cerebral spinal fluid samples obtained from a mouse model of Parkinson's Disease. The platform presented in this work can lead the way to graphene-based neurotransmitter sensors suitable for real-world academic and pre-clinical pharmaceutical research as well as clinical diagnosis.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Brain Diseases , Graphite , Animals , Mice , Dopamine , Biosensing Techniques/methods
9.
Beilstein J Nanotechnol ; 13: 796-806, 2022.
Article in English | MEDLINE | ID: mdl-36105686

ABSTRACT

Mass production and commercial adoption of graphene-based devices are held back by a few crucial technical challenges related to quality control. In the case of graphene produced by chemical vapor deposition, the transfer process represents a delicate step that can compromise device performance and reliability, thus hindering industrial production. In this context, the impact of poly(methyl methacrylate) (PMMA), the most common support material for transferring graphene from the Cu substrate to any target surface, can be decisive in obtaining reproducible sample batches. Although effective in mechanically supporting graphene during the transfer, PMMA solutions needs to be efficiently designed, deposited, and post-treated to serve their purpose while minimizing potential contaminations. Here, we prepared and tested PMMA solutions with different average molecular weight (AMW) and weight concentration in anisole, to be deposited by spin coating. Optical microscopy and Raman spectroscopy showed that the amount of PMMA residues on transferred graphene is proportional to the AMW and concentration in the solvent. At the same time, the mechanical strength of the PMMA layer is proportional to the AMW. These tests served to design an optimized PMMA solution made of a mixture of 550,000 (550k) and 15,000 (15k) AMW PMMA in anisole at 3% concentration. In this design, PMMA-550k provided suitable mechanical strength against breakage during the transfer cycles, while PMMA-15k promoted depolymerization, which allowed for a complete removal of PMMA residues without the need for any post-treatment. An XPS analysis confirmed the cleanness of the optimized process. We validated the impact of the optimized PMMA solution on the mass fabrication of arrays of electrolyte-gated graphene field-effect transistors operating as biosensors. On average, the transistor channel resistance decreased from 1860 to 690 Ω when using the optimized PMMA. Even more importantly, the vast majority of these resistance values are distributed within a narrow range (only ca. 300 Ω wide), in evident contrast with the scattered values obtained in non-optimized devices (about 30% of which showed values above 1 MΩ). These results prove that the optimized PMMA solution unlock the production of reproducible electronic devices at the batch scale, which is the key to industrial production.

10.
Opt Express ; 30(7): 10563-10572, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35473019

ABSTRACT

This work employs spectral and spectral-temporal Photoluminescence (PL) spectroscopy techniques to study the radiative mechanisms in colloidal CdSe/ZnS Quantum Dot (QD) thin films without and with 1% PMMA polymer matrix embedding (QDPMMA). The observed bimodal transient-spectral PL distributions reveal bandgap transitions and radiative recombinations after interdot electron transfer. The PMMA polymer embedding protects the QDs during the plasma-sputtering of inorganic layers electroluminescent (EL) devices, with minimal impact on the charge transfer properties. Further, a novel TiO2-based, all-electron bandgap, AC-driven QLED architecture is fabricated, yielding a surprisingly low turn-on voltage, with PL-identical and narrow-band EL emission. The symmetric TiO2 bilayer architecture is a promising test platform for alternative optical active materials.

11.
Nanomaterials (Basel) ; 11(8)2021 Jul 25.
Article in English | MEDLINE | ID: mdl-34443745

ABSTRACT

The use of Ta/TaN barrier bilayer systems in electronic applications has been ubiquitous over the last decade. Alternative materials such as Co-W or Ru-W alloys have gathered interest as possible replacements due to their conjugation of favourable electrical properties and barrier layer efficiency at reduced thicknesses while enabling seedless Cu electroplating. The microstructure, morphology, and electrical properties of Cu films directly electrodeposited onto Co-W or Ru-W are important to assess, concomitant with their ability to withstand the electroplating baths/conditions. This work investigates the effects of the current application method and pH value of the electroplating solution on the electrocrystallisation behaviour of Cu deposited onto a Co-W barrier layer. The film structure, morphology, and chemical composition were studied by X-ray diffraction, scanning electron microscopy and atomic force microscopy, as well as photoelectron spectroscopy. The results show that the electrolyte solution at pH 1.8 is incapable of creating a compact Cu film over the Co-W layer in either pulsed or direct-current modes. At higher pH, a continuous film is formed. A mechanism is proposed for the nucleation and growth of Cu on Co-W, where a balance between Cu nucleation, growth, and preferential Co dissolution dictates the substrate area coverage and compactness of the electrodeposited films.

12.
Nanomaterials (Basel) ; 11(7)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201696

ABSTRACT

Rhenium-based 2D transition metal dichalcogenides such as ReSe2 are suitable candidates as photoactive materials for optoelectronic devices. Here, photodetectors based on mechanically exfoliated ReSe2 crystals were fabricated using chemical vapor deposited (CVD) graphene single-crystal (GSC) as lateral contacts. A "pick & place" method was adopted to transfer the desired crystals to the intended position, easing the device fabrication while reducing potential contaminations. A similar device with Au was fabricated to compare contacts' performance. Lastly, a CVD hexagonal boron nitride (hBN) substrate passivation layer was designed and introduced in the device architecture. Raman spectroscopy was carried out to evaluate the device materials' structural and electronic properties. Kelvin probe force measurements were done to calculate the materials' work function, measuring a minimal Schottky barrier height for the GSC/ReSe2 contact (0.06 eV). Regarding the electrical performance, I-V curves showed sizable currents in the GSC/ReSe2 devices in the dark and under illumination. The devices presented high photocurrent and responsivity, along with an external quantum efficiency greatly exceeding 100%, confirming the non-blocking nature of the GSC contacts at high bias voltage (above 2 V). When introducing the hBN passivation layer, the device under white light reached a photo-to-dark current ratio up to 106.

13.
Front Bioeng Biotechnol ; 9: 612669, 2021.
Article in English | MEDLINE | ID: mdl-33585432

ABSTRACT

Two-dimensional material (2DM) coatings exhibit complex and controversial interactions with biological matter, having shown in different contexts to induce bacterial cell death and contribute to mammalian cell growth and proliferation in vitro and tissue differentiation in vivo. Although several reports indicate that the morphologic and electronic properties of the coating, as well as its surface features (e.g., crystallinity, wettability, and chemistry), play a key role in the biological interaction, these kinds of interactions have not been fully understood yet. In this review, we report and classify the cellular interaction mechanisms observed in graphene and hexagonal boron nitride (hBN) coatings. Graphene and hBN were chosen as study materials to gauge the effect of two atomic-thick coatings with analogous lattice structure yet dissimilar electrical properties upon contact with living matter, allowing to discern among the observed effects and link them to specific material properties. In our analysis, we also considered the influence of crystallinity and surface roughness, detailing the mechanisms of interaction that make specific coatings of these 2DMs either hostile toward bacterial cells or innocuous for mammalian cells. In doing this, we discriminate among the material and surface properties, which are often strictly connected to the 2DM production technique, coating deposition and post-processing method. Building on this knowledge, the selection of 2DM coatings based on their specific characteristics will allow to engineer desired functionalities and devices. Antibacterial coatings to prevent biofouling, biocompatible platforms suitable for biomedical applications (e.g., wound healing, tissue repairing and regeneration, and novel biosensing devices) could be realized in the next future. Overall, a clear understanding on how the 2DM coating's properties may modulate a specific bacterial or cellular response is crucial for any future innovation in the field.

14.
Biosensors (Basel) ; 11(1)2021 Jan 17.
Article in English | MEDLINE | ID: mdl-33477344

ABSTRACT

Liquid-gated Graphene Field-Effect Transistors (GFET) are ultrasensitive bio-detection platforms carrying out the graphene's exceptional intrinsic functionalities. Buffer and dilution factor are prevalent strategies towards the optimum performance of the GFETs. However, beyond the Debye length (λD), the role of the graphene-electrolytes' ionic species interactions on the DNA behavior at the nanoscale interface is complicated. We studied the characteristics of the GFETs under different ionic strength, pH, and electrolyte type, e.g., phosphate buffer (PB), and phosphate buffer saline (PBS), in an automatic portable built-in system. The electrostatic gating and charge transfer phenomena were inferred from the field-effect measurements of the Dirac point position in single-layer graphene (SLG) transistors transfer curves. Results denote that λD is not the main factor governing the effective nanoscale screening environment. We observed that the longer λD was not the determining characteristic for sensitivity increment and limit of detection (LoD) as demonstrated by different types and ionic strengths of measuring buffers. In the DNA hybridization study, our findings show the role of the additional salts present in PBS, as compared to PB, in increasing graphene electron mobility, electrostatic shielding, intermolecular forces and DNA adsorption kinetics leading to an improved sensitivity.


Subject(s)
Biosensing Techniques/instrumentation , DNA/analysis , Graphite/chemistry , Electrolytes/chemistry , Salts/chemistry , Transistors, Electronic
15.
Materials (Basel) ; 13(24)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33334060

ABSTRACT

This work is on developing clean-room processes for the fabrication of electrolyte-gate graphene field-effect transistors at the wafer scale for biosensing applications. Our fabrication process overcomes two main issues: removing surface residues after graphene patterning and the dielectric passivation of metallic contacts. A graphene residue-free transfer process is achieved by using a pre-transfer, sacrificial metallic mask that protects the entire wafer except the areas around the channel, source, and drain, onto which the graphene film is transferred and later patterned. After the dissolution of the mask, clean gate electrodes are obtained. The multilayer SiO2/SiNx dielectric passivation takes advantage of the excellent adhesion of SiO2 to graphene and the substrate materials and the superior impermeability of SiNx. It hinders native nucleation centers and breaks the propagation of defects through the layers, protecting from prolonged exposition to all common solvents found in biochemistry work, contrary to commonly used polymeric passivation. Since wet etch does not allow the required level of control over the lithographic process, a reactive ion etching process using a sacrificial metallic stopping layer is developed and used for patterning the passivation layer. The process achieves devices with high reproducibility at the wafer scale.

16.
Biosens Bioelectron ; 157: 112144, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32250927

ABSTRACT

In vitro fertilization (IVF) is the most common assisted reproductive technology used to treat infertility. Embryo selection for transfer in IVF cycles relies on the morphological evaluation by embryologists, either by conventional microscopic assessment or more recently by time-lapse imaging systems. Despite the introduction of time-lapse imaging improvements in IVF success rates have failed to materialize, therefore alternative approaches are needed. Recent studies have shown that embryos resulting in successful pregnancy differ in their secretome and metabolism compared to embryos that fail to implant, suggesting that molecular analysis of embryo culture medium could assist in non-invasive single embryo selection. However, this approach has yet to be adopted clinically due to the lack of appropriate highly sensitive screening technologies needed to assess volume-limited samples. Here we report the detection of hCGß, IL-8 and TNFα from conditioned culture media of single human embryos using electrochemical impedance spectroscopy. The impedimetric immunosensors revealed that morphologically non-viable embryos produce higher levels of IL-8 and TNFα, associated with abnormal cell division and cell death, respectively. More importantly, hCGß detection was able to discriminate apparently morphologically identical viable embryos. This work brings an objective dimension to embryo selection, which could overcome the major limitations of morphology-based embryo selection for implantation. Future work should include the validation of these biomarkers in a large patient cohort.


Subject(s)
Chorionic Gonadotropin, beta Subunit, Human/analysis , Culture Media, Conditioned/metabolism , Embryo, Mammalian/metabolism , Interleukin-8/analysis , Tumor Necrosis Factor-alpha/analysis , Biosensing Techniques/methods , Cell Line , Chorionic Gonadotropin, beta Subunit, Human/metabolism , Culture Media, Conditioned/analysis , Embryo Culture Techniques , Embryo Implantation , Embryonic Development , Female , Fertilization in Vitro , Humans , Immunoassay/methods , Interleukin-8/metabolism , Pregnancy , Tumor Necrosis Factor-alpha/metabolism
17.
ACS Sens ; 4(2): 286-293, 2019 02 22.
Article in English | MEDLINE | ID: mdl-30672282

ABSTRACT

In this work, we develop a field-effect transistor with a two-dimensional channel made of a single graphene layer to achieve label-free detection of DNA hybridization down to attomolar concentration, while being able to discriminate a single nucleotide polymorphism (SNP). The SNP-level target specificity is achieved by immobilization of probe DNA on the graphene surface through a pyrene-derivative heterobifunctional linker. Biorecognition events result in a positive gate voltage shift of the graphene charge neutrality point. The graphene transistor biosensor displays a sensitivity of 24 mV/dec with a detection limit of 25 aM: the lowest target DNA concentration for which the sensor can discriminate between a perfect-match target sequence and SNP-containing one.


Subject(s)
Biosensing Techniques/instrumentation , DNA/chemistry , Graphite/chemistry , Limit of Detection , Transistors, Electronic , DNA/genetics , DNA Probes/chemistry , Models, Molecular , Molecular Conformation , Nucleic Acid Hybridization , Polymorphism, Single Nucleotide , Surface Properties
18.
Nanoscale ; 9(8): 2711-2717, 2017 Feb 23.
Article in English | MEDLINE | ID: mdl-28230880

ABSTRACT

Ultrafine molybdenum sulfide (MoS2) nanocrystals are grown on a porous cobalt (Co) foam current collector by atomic layer deposition (ALD) using molybdenum hexacarbonyl and hydrogen sulfide as precursors. When used to catalyze the oxygen evolution reaction (OER), the optimal Co@MoS2 electrode, even with a MoS2 loading as small as 0.06 mg cm-2, exhibits a large cathodic shift of ca. 200 mV in the onset potential (the potential at which the current density is 5 mA cm-2), a low overpotential of only 270 mV to attain an anodic current density of 10 mA cm-2, much smaller charge transfer resistance and substantially improved long-term stability at both low and high current densities, with respect to the bare Co foam electrode, showing substantial promise for use as an efficient, low-cost and durable anode in water electrolyzers.

19.
Chem Commun (Camb) ; 51(53): 10742-5, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26050844

ABSTRACT

We demonstrate the first example of silicon nanowire array photocathodes coupled with hollow spheres of the emerging earth-abundant cobalt phosphide catalysts. Compared to bare silicon nanowire arrays, the hybrid electrodes exhibit significantly improved photoelectrochemical performance toward the solar-driven H2 evolution reaction.

20.
Nanoscale Res Lett ; 6(1): 309, 2011 Apr 07.
Article in English | MEDLINE | ID: mdl-21711818

ABSTRACT

In this study, transparent conducting nanocrystalline ZnO:Ga (GZO) films were deposited by dc magnetron sputtering at room temperature on polymers (and glass for comparison). Electrical resistivities of 8.8 × 10-4 and 2.2 × 10-3 Ω cm were obtained for films deposited on glass and polymers, respectively. The crack onset strain (COS) and the cohesive strength of the coatings were investigated by means of tensile testing. The COS is similar for different GZO coatings and occurs for nominal strains approx. 1%. The cohesive strength of coatings, which was evaluated from the initial part of the crack density evolution, was found to be between 1.3 and 1.4 GPa. For these calculations, a Young's modulus of 112 GPa was used, evaluated by nanoindentation.

SELECTION OF CITATIONS
SEARCH DETAIL
...