Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Sci Rep ; 13(1): 14047, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37640739

ABSTRACT

Tumor-infiltrating lymphocytes, specialized immune cells, are considered an important biomarker in cancer analysis. Automated lymphocyte detection is challenging due to its heterogeneous morphology, variable distribution, and presence of artifacts. In this work, we propose a novel Boosted Channels Fusion-based CNN "BCF-Lym-Detector" for lymphocyte detection in multiple cancer histology images. The proposed network initially selects candidate lymphocytic regions at the tissue level and then detects lymphocytes at the cellular level. The proposed "BCF-Lym-Detector" generates diverse boosted channels by utilizing the feature learning capability of different CNN architectures. In this connection, a new adaptive fusion block is developed to combine and select the most relevant lymphocyte-specific features from the generated enriched feature space. Multi-level feature learning is used to retain lymphocytic spatial information and detect lymphocytes with variable appearances. The assessment of the proposed "BCF-Lym-Detector" show substantial improvement in terms of F-score (0.93 and 0.84 on LYSTO and NuClick, respectively), which suggests that the diverse feature extraction and dynamic feature selection enhanced the feature learning capacity of the proposed network. Moreover, the proposed technique's generalization on unseen test sets with a good recall (0.75) and F-score (0.73) shows its potential use for pathologists' assistance.


Subject(s)
Lymphocytes , Neoplasms , Humans , Lymphocytes, Tumor-Infiltrating , Neoplasms/diagnosis , Artifacts , Biology
2.
Interdiscip Sci ; 15(2): 273-292, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36611082

ABSTRACT

Accurate segregation of retinal blood vessels network plays a crucial role in clinical assessments, treatments, and rehabilitation process. Owing to the presence of acquisition and instrumentation anomalies, precise tracking of vessels network is challenging. For this, a new fundus image segmentation framework is proposed by combining deep neural networks, and hidden Markov model. It has three main modules: the Atrous spatial pyramid pooling-based encoder, the decoder, and hidden Markov model vessel tracker. The encoder utilized modified ResNet18 deep neural networks model for low-and-high-levels features extraction. These features are concatenated in module-II by the decoder to perform convolution operations to obtain the initial segmentation. Previous modules detected the main vessel structure and overlooked some small capillaries. For improved segmentation, hidden Markov model vessel tracker is integrated with module-I and-II to detect overlooked small capillaries of the vessels network. In last module, final segmentation is obtained by combining multi-oriented sub-images using logical OR operation. This novel framework is validated experimentally using two standard DRIVE and STARE datasets. The developed model offers high average values of accuracy, area under the curve, and sensitivity of 99.8, 99.0, and 98.2%, respectively. Analysis of the results revealed that the developed approach offered enhanced performance in terms of sensitivity 18%, accuracy 3%, and specificity 1% over the state-of-the-art approaches. Owing to better learning and generalization capability, the developed approach tracked blood vessels network efficiently and automatically compared to other approaches. The proposed approach can be helpful for human eye assessment, disease diagnosis, and rehabilitation process.


Subject(s)
Deep Learning , Humans , Algorithms , Neural Networks, Computer , Retinal Vessels/diagnostic imaging , Fundus Oculi , Image Processing, Computer-Assisted/methods
3.
Comput Biol Med ; 151(Pt A): 106332, 2022 12.
Article in English | MEDLINE | ID: mdl-36413815

ABSTRACT

Ischemic and hemorrhagic strokes are two major types of internal brain injury. 3D brain MRI is suggested by neurologists to examine the brain. Manual examination of brain MRI is very sensitive and time-consuming task. However, automatic diagnosis can assist doctors in this regard. Anatomical Tracings of Lesions After Stroke (ATLAS) is publicly available dataset for research experiments. One of the major issues in medical imaging is class imbalance. Similarly, pixel representation of stroke lesion is less than 1% in ATLAS. Second major challenge in this dataset is inter-class similarity. A multi-level classification network (MCN) is proposed for segmentation of ischemic stroke lesions. MCN consists of three cascaded discrete networks. The first network designed to reduce the slice level class imbalance, where a classifier model is trained to extract the slices of stroke lesions from a whole brain MRI volume. The interclass similarity cause to produce false positives in segmented output. Therefore, all extracted stroke slices were divided into overlapping patches (64 × 64) and carried to the second network. The task associated with second network is to classify the patches comprises of stroke lesion. The third network is a 2D modified residual U-Net that segments out the stroke lesions from the patches extracted by the second network. MCN achieved 0.754 mean dice score on test dataset which is higher than the other state-of-the-art methods on the same dataset.


Subject(s)
Ischemic Stroke , Stroke , Humans , Stroke/diagnostic imaging , Disease Progression , Neuroimaging , Brain/diagnostic imaging
4.
Sensors (Basel) ; 22(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36146347

ABSTRACT

Attention is a complex cognitive process with innate resource management and information selection capabilities for maintaining a certain level of functional awareness in socio-cognitive service agents. The human-machine society depends on creating illusionary believable behaviors. These behaviors include processing sensory information based on contextual adaptation and focusing on specific aspects. The cognitive processes based on selective attention help the agent to efficiently utilize its computational resources by scheduling its intellectual tasks, which are not limited to decision-making, goal planning, action selection, and execution of actions. This study reports ongoing work on developing a cognitive architectural framework, a Nature-inspired Humanoid Cognitive Computing Platform for Self-aware and Conscious Agents (NiHA). The NiHA comprises cognitive theories, frameworks, and applications within machine consciousness (MC) and artificial general intelligence (AGI). The paper is focused on top-down and bottom-up attention mechanisms for service agents as a step towards machine consciousness. This study evaluates the behavioral impact of psychophysical states on attention. The proposed agent attains almost 90% accuracy in attention generation. In social interaction, contextual-based working is important, and the agent attains 89% accuracy in its attention by adding and checking the effect of psychophysical states on parallel selective attention. The addition of the emotions to attention process produced more contextual-based responses.


Subject(s)
Artificial Intelligence , Psychophysiology , Cognition/physiology , Humans , Perception
5.
PeerJ Comput Sci ; 8: e985, 2022.
Article in English | MEDLINE | ID: mdl-35721412

ABSTRACT

Dengue virus (DENV) infection is one of the major health issues and a substantial epidemic infectious human disease. More than two billion humans are living in dengue susceptible regions with annual infection mortality rate is about 5%-20%. At initial stages, it is difficult to differentiate dengue virus symptoms with other similar diseases. The main objective of this research is to diagnose dengue virus infection in human blood sera for better treatment and rehabilitation process. A novel and robust approach is proposed based on Raman spectroscopy and deep learning. In this regard, the ResNet101 deep learning model is modified by exploiting transfer learning (TL) concept on Raman spectroscopic data of human blood sera. Sample size was selected using standard statistical tests. The proposed model is evaluated on 2,000 Raman spectra images in which 1,200 are DENV-infected of human blood sera samples, and 800 are healthy ones. It offers 96.0% accuracy on testing data for DENV infection diagnosis. Moreover, the developed approach demonstrated minimum improvement of 6.0% and 7.0% in terms of AUC and Kappa index respectively over the other state-of-the-art techniques. The developed model offers superior performance to capture minute Raman spectral variations due to the better residual learning capability and generalization ability compared to others deep learning models. The developed model revealed that it might be applied for diagnosis of DENV infection to save precious human lives.

6.
Microscopy (Oxf) ; 71(5): 271-282, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-35640304

ABSTRACT

Malaria is a life-threatening infection that infects the red blood cells and gradually grows throughout the body. The plasmodium parasite is transmitted by a female Anopheles mosquito bite and severely affects numerous individuals within the world every year. Therefore, early detection tests are required to identify parasite-infected cells. The proposed technique exploits the learning capability of deep convolutional neural network (CNN) to distinguish the parasite-infected patients from healthy individuals using thin blood smear. In this regard, the detection is accomplished using a novel STM-SB-RENet block-based CNN that employs the idea of split-transform-merge (STM) and channel squeezing-boosting (SB) in a modified fashion. In this connection, a new convolutional block-based STM is developed, which systematically implements region and edge operations to explore the parasitic infection pattern of malaria related to region homogeneity, structural obstruction and boundary-defining features. Moreover, the diverse boosted feature maps are achieved by incorporating the new channel SB and transfer learning (TL) idea in each STM block at abstract, intermediate and target levels to capture minor contrast and texture variation between parasite-infected and normal artifacts. The malaria input images for the proposed models are initially transformed using discrete wavelet transform to generate enhanced and reduced feature space. The proposed architectures are validated using hold-out cross-validation on the National Institute of Health Malaria dataset. The proposed methods outperform training from scratch and TL-based fine-tuned existing techniques. The considerable performance (accuracy: 97.98%, sensitivity: 0.988, F-score: 0.980 and area under the curve: 0.996) of STM-SB-RENet suggests that it can be utilized to screen malaria-parasite-infected patients. Graphical Abstract.


Subject(s)
Malaria , Parasites , Animals , Erythrocytes , Female , Histological Techniques , Humans , Malaria/parasitology , Neural Networks, Computer
7.
Sci Rep ; 11(1): 22550, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34799684

ABSTRACT

Estimation of the effectiveness of Au nanoparticles concentration in peristaltic flow through a curved channel by using a data driven stochastic numerical paradigm based on artificial neural network is presented in this study. In the modelling, nano composite is considered involving multi-walled carbon nanotubes coated with gold nanoparticles with different slip conditions. Modeled differential system of the physical problem is numerically analyzed for different scenarios to predict numerical data for velocity and temperature by Adams Bashforth method and these solutions are used as a reference dataset of the networks. Data is processed by segmentation into three categories i.e., training, validation and testing while Levenberg-Marquart training algorithm is adopted for optimization of networks results in terms of performance on mean square errors, train state plots, error histograms, regression analysis, time series responses, and auto-correlation, which establish the accurate and efficient recognition of trends of the system.

8.
Sci Rep ; 10(1): 12868, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32732962

ABSTRACT

Rapid advancement in imaging technology generates an enormous amount of heterogeneous medical data for disease diagnosis and rehabilitation process. Radiologists may require related clinical cases from medical archives for analysis and disease diagnosis. It is challenging to retrieve the associated clinical cases automatically, efficiently and accurately from the substantial medical image archive due to diversity in diseases and imaging modalities. We proposed an efficient and accurate approach for medical image modality classification that can used for retrieval of clinical cases from large medical repositories. The proposed approach is developed using transfer learning concept with pre-trained ResNet50 Deep learning model for optimized features extraction followed by linear discriminant analysis classification (TLRN-LDA). Extensive experiments are performed on challenging standard benchmark ImageCLEF-2012 dataset of 31 classes. The developed approach yields improved average classification accuracy of 87.91%, which is higher up-to 10% compared to the state-of-the-art approaches on the same dataset. Moreover, hand-crafted features are extracted for comparison. Performance of TLRN-LDA system demonstrates the effectiveness over state-of-the-art systems. The developed approach may be deployed to diagnostic centers to assist the practitioners for accurate and efficient clinical case retrieval and disease diagnosis.

9.
Sensors (Basel) ; 19(21)2019 Nov 02.
Article in English | MEDLINE | ID: mdl-31684014

ABSTRACT

Quality of service (QoS)-aware data gathering in static-channel based underwater wireless sensor networks (UWSNs) is severely limited due to location and time-dependent acoustic channel communication characteristics. This paper proposes a novel cross-layer QoS-aware multichannel routing protocol called QoSRP for the internet of UWSNs-based time-critical marine monitoring applications. The proposed QoSRP scheme considers the unique characteristics of the acoustic communication in highly dynamic network topology during gathering and relaying events data towards the sink. The proposed QoSRP scheme during the time-critical events data-gathering process employs three basic mechanisms, namely underwater channel detection (UWCD), underwater channel assignment (UWCA) and underwater packets forwarding (UWPF). The UWCD mechanism finds the vacant channels with a high probability of detection and low probability of missed detection and false alarms. The UWCA scheme assigns high data rates channels to acoustic sensor nodes (ASNs) with longer idle probability in a robust manner. Lastly, the UWPF mechanism during conveying information avoids congestion, data path loops and balances the data traffic load in UWSNs. The QoSRP scheme is validated through extensive simulations conducted by NS2 and AquaSim 2.0 in underwater environments (UWEs). The simulation results reveal that the QoSRP protocol performs better compared to existing routing schemes in UWSNs.

10.
Sensors (Basel) ; 19(23)2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31757104

ABSTRACT

The importance of body area sensor networks (BASNs) is increasing day by day because of their increasing use in Internet of things (IoT)-enabled healthcare application services. They help humans in improving their quality of life by continuously monitoring various vital signs through biosensors strategically placed on the human body. However, BASNs face serious challenges, in terms of the short life span of their batteries and unreliable data transmission, because of the highly unstable and unpredictable channel conditions of tiny biosensors located on the human body. These factors may result in poor data gathering quality in BASNs. Therefore, a more reliable data transmission mechanism is greatly needed in order to gather quality data in BASN-based healthcare applications. Therefore, this study proposes a novel, multiobjective, lion mating optimization inspired routing protocol, called self-organizing multiobjective routing protocol (SARP), for BASN-based IoT healthcare applications. The proposed routing scheme significantly reduces local search problems and finds the best dynamic cluster-based routing solutions between the source and destination in BASNs. Thus, it significantly improves the overall packet delivery rate, residual energy, and throughput with reduced latency and packet error rates in BASNs. Extensive simulation results validate the performance of our proposed SARP scheme against the existing routing protocols in terms of the packet delivery ratio, latency, packet error rate, throughput, and energy efficiency for BASN-based health monitoring applications.


Subject(s)
Biosensing Techniques/methods , Delivery of Health Care , Wireless Technology , Algorithms , Computer Communication Networks , Delivery of Health Care/methods , Electric Power Supplies , Human Body , Humans , Quality of Life , Records
11.
Sensors (Basel) ; 19(23)2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31775385

ABSTRACT

Speaker diarization systems aim to find 'who spoke when?' in multi-speaker recordings. The dataset usually consists of meetings, TV/talk shows, telephone and multi-party interaction recordings. In this paper, we propose a novel multimodal speaker diarization technique, which finds the active speaker through audio-visual synchronization model for diarization. A pre-trained audio-visual synchronization model is used to find the synchronization between a visible person and the respective audio. For that purpose, short video segments comprised of face-only regions are acquired using a face detection technique and are then fed to the pre-trained model. This model is a two streamed network which matches audio frames with their respective visual input segments. On the basis of high confidence video segments inferred by the model, the respective audio frames are used to train Gaussian mixture model (GMM)-based clusters. This method helps in generating speaker specific clusters with high probability. We tested our approach on a popular subset of AMI meeting corpus consisting of 5.4 h of recordings for audio and 5.8 h of different set of multimodal recordings. A significant improvement is noticed with the proposed method in term of DER when compared to conventional and fully supervised audio based speaker diarization. The results of the proposed technique are very close to the complex state-of-the art multimodal diarization which shows significance of such simple yet effective technique.

SELECTION OF CITATIONS
SEARCH DETAIL