Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Cell Biochem Biophys ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285156

ABSTRACT

In response to cellular perturbations, a multimeric cytosolic protein complex known as the NLRP3 inflammasome assembles. As a result of this assembly, caspase-1 is activated, which encourages inflammatory cell death (pyroptosis) as well as the maturation and release of the inflammatory cytokines interleukin-1ß (IL-1ß) and IL-18. Tumor etiology involves dysregulation of NLRP3 inflammasome activation, but because of conflicting results, its significance in the onset and spread of cancer is still up for debate. New research indicates that long-non coding RNAs (lncRNAs) play a crucial part in controlling the activity of the NLRP3 inflammasome in a number of disorders. Non-coding RNAs longer than 200 nucleotides are known as lncRNAs. Cancer development has been connected to its deregulation in the development of illnesses. Growing data suggests that controlling lncRNAs on the NLRP3 inflammasome plays a crucial role in the emergence and progression of cancer-related challenges. Here, we discuss over how lncRNAs control the NLRP3 inflammasome and how it functions in different types of cancer cells, offering new perspectives on creating new cancer treatment strategies in the future.

2.
Pathol Res Pract ; 263: 155591, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39288476

ABSTRACT

Acute kidney injury (AKI) has a high rate of morbidity, death, and medical expenses, making it a worldwide public health problem. There are still few viable treatment plans for AKI despite medical advancements. A subclass of non-coding RNAs with over 200 nucleotides in length, long non-coding RNAs (lncRNAs) have a wide range of biological roles. Lately, lncRNAs have become important mediators of AKI and prospective biomarkers. However, current studies show that, via constructing the lncRNA/microRNA/target gene regulatory axis, abnormal expression of lncRNAs has been connected to significant pathogenic processes associated with AKI, such as the inflammatory response, cell proliferation, and apoptosis. In order to compete with mRNAs for binding to the same miRNAs and affect the expression of transcripts targeted by miRNAs, lncRNAs may function as competing endogenous RNAs (ceRNAs). The most widely used approach for researching the biological roles of lncRNAs is the construction of ceRNA regulation networks. Our goal in this article is to deliver an updated review of lncRNAs in AKI and to provide more knowledge on their possible applications as therapeutic targets and AKI biomarkers.

3.
Animal Model Exp Med ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136058

ABSTRACT

Flavonoids, including fisetin, have been linked to a reduced risk of colorectal cancer (CRC) and have potential therapeutic applications for the condition. Fisetin, a natural flavonoid found in various fruits and vegetables, has shown promise in managing CRC due to its diverse biological activities. It has been found to influence key cell signaling pathways related to inflammation, angiogenesis, apoptosis, and transcription factors. The results of this study demonstrate that fisetin induces colon cancer cell apoptosis through multiple mechanisms. It impacts the p53 pathway, leading to increased levels of p53 and decreased levels of murine double minute 2, contributing to apoptosis induction. Fisetin also triggers the release of important components in the apoptotic process, such as second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI and cytochrome c. Furthermore, fisetin inhibits the cyclooxygenase-2 and wingless-related integration site (Wnt)/epidermal growth factor receptor/nuclear factor kappa B signaling pathways, reducing Wnt target gene expression and hindering colony formation. It achieves this by regulating the activities of cyclin-dependent kinase 2 and cyclin-dependent kinase 4, reducing retinoblastoma protein phosphorylation, decreasing cyclin E levels, and increasing p21 levels, ultimately influencing E2 promoter binding factor 1 and cell division cycle 2 (CDC2) protein levels. Additionally, fisetin exhibits various effects on CRC cells, including inhibiting the phosphorylation of Y-box binding protein 1 and ribosomal S6 kinase, promoting the phosphorylation of extracellular signal-regulated kinase 1/2, and disrupting the repair process of DNA double-strand breaks. Moreover, fisetin serves as an adjunct therapy for the prevention and treatment of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA)-mutant CRC, resulting in a reduction in phosphatidylinositol-3 kinase (PI3K) expression, Ak strain transforming phosphorylation, mTOR activity, and downstream target proteins in CRC cells with a PIK3CA mutation. These findings highlight the multifaceted potential of fisetin in managing CRC and position it as a promising candidate for future therapy development.

4.
Pathol Res Pract ; 260: 155455, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39043005

ABSTRACT

One of the mainstays of cancer treatment is chemotherapy. Drug resistance, however, continues to be the primary factor behind clinical treatment failure. Gene expression is regulated by long non-coding RNAs (lncRNAs) in several ways, including chromatin remodeling, translation, epigenetic, and transcriptional levels. Cancer hallmarks such as DNA damage, metastasis, immunological evasion, cell stemness, drug resistance, metabolic reprogramming, and angiogenesis are all influenced by LncRNAs. Numerous studies have been conducted on LncRNA-driven mechanisms of resistance to different antineoplastic drugs. Diverse medication kinds elicit diverse resistance mechanisms, and each mechanism may have multiple contributing factors. As a result, several lncRNAs have been identified as new biomarkers and therapeutic targets for identifying and managing cancers. This compels us to thoroughly outline the crucial roles that lncRNAs play in drug resistance. In this regard, this article provides an in-depth analysis of the recently discovered functions of lncRNAs in the pathogenesis and chemoresistance of cancer. As a result, the current research might offer a substantial foundation for future drug resistance-conquering strategies that target lncRNAs in cancer therapies.


Subject(s)
Drug Resistance, Neoplasm , Neoplasms , RNA, Long Noncoding , Signal Transduction , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Drug Resistance, Neoplasm/genetics , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/pathology , Signal Transduction/drug effects , Gene Expression Regulation, Neoplastic , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Animals
5.
Cell Biochem Biophys ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987439

ABSTRACT

Even though RNA treatments were first proposed as a way to change aberrant signaling in cancer, research in this field is currently ongoing. The term "RNAi" refers to the use of several RNAi technologies, including ribozymes, riboswitches, Aptamers, small interfering RNA (siRNA), antisense oligonucleotides (ASOs), and CRISPR/Cas9 technology. The siRNA therapy has already achieved a remarkable feat by revolutionizing the treatment arena of cancers. Unlike small molecules and antibodies, which need administration every three months or even every two years, RNAi may be given every quarter to attain therapeutic results. In order to overcome complex challenges, delivering siRNAs to the targeted tissues and cells effectively and safely and improving the effectiveness of siRNAs in terms of their action, stability, specificity, and potential adverse consequences are required. In this context, the three primary techniques of siRNA therapies for hepatocellular carcinoma (HCC) are accomplished for inhibiting angiogenesis, decreasing cell proliferation, and promoting apoptosis, are discussed in this review. We also deliberate targeting issues, immunogenic reactions to siRNA therapy, and the difficulties with their intrinsic chemistry and transportation.

6.
Arch Biochem Biophys ; 758: 110066, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38906310

ABSTRACT

Now, genomics forms the core of the precision medicine concept. Comprehensive investigations of tumor genomes have made it possible to characterize tumors at the molecular level and, specifically, to identify the fundamental processes that cause condition. A variety of kinds of tumors have seen better outcomes for patients as a result of the development of novel medicines to tackle these genetic-driving processes. Since therapy may exert selective pressure on cancers, non-invasive methods such as liquid biopsies can provide the opportunity for rich reservoirs of crucial and real-time genetic data. Liquid biopsies depend on the identification of circulating cells from tumors, circulating tumor DNA (ctDNA), RNA, proteins, lipids, and metabolites found in patient biofluids, as well as cell-free DNA (cfDNA), which exists in those with cancer. Although it is theoretically possible to examine biological fluids other than plasma, such as pleural fluid, urine, saliva, stool, cerebrospinal fluid, and ascites, we will limit our discussion to blood and solely cfDNA here for the sake of conciseness. Yet, the pace of wider clinical acceptance has been gradual, partly due to the increased difficulty of choosing the best analysis for the given clinical issue, interpreting the findings, and delaying proof of value from clinical trials. Our goal in this review is to discuss the current clinical value of ctDNA in cancers and how clinical oncology systems might incorporate procedures for ctDNA testing.


Subject(s)
Circulating Tumor DNA , Neoplasms , Humans , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Neoplasms/blood , Neoplasms/genetics , Neoplasms/drug therapy , Liquid Biopsy/methods , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Precision Medicine/methods
7.
Crit Rev Anal Chem ; : 1-22, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829552

ABSTRACT

Field effect transistors (FETs)-based detection probes are powerful platforms for quantification in biological media due to their sensitivity, ease of miniaturization, and ability to function in biological media. Especially, FET-based platforms have been utilized as promising probes for label-free detections with the potential for use in real-time monitoring. The integration of new materials in the FET-based probe enhances the analytical performance of the developed probes by increasing the active surface area, rejecting interfering agents, and providing the possibility for surface modification. Furthermore, the use of new materials eliminates the need for traditional labeling techniques, providing rapid and cost-effective detection of biological analytes. This review discusses the application of materials in the development of FET-based label-free systems for point-of-care (POC) analysis of different biomedical analytes from 2018 to 2024. The mechanism of action of the reported probes is discussed, as well as their pros and cons were also investigated. Also, the possible challenges and potential for the fabrication of commercial devices or methods for use in clinics were discussed.

8.
Mol Divers ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856834

ABSTRACT

Hepatitis C Virus (HCV) is a significant health concern affecting a large portion of the global population and is a major cause of acute liver diseases, including cirrhosis. The variability in the HCV genome mainly results from the rapid replication facilitated by the NS5B polymerase, making it a prime target for anti-HCV drug development. This study explores potential compounds from marine bacteria that could inhibit the HCV NS5B polymerase by virtual screening, analyzing the energetics, and dynamic behavior of target-compound complexes. Virtual screening with the Lipinski filter was employed to select compounds from the marine bacteria database that demonstrated strong binding affinity to NS5B. The top four (CMNPD27216, CMNPD21066, CMNPD21065, and CMNPD27283) compounds, ranked by their re-docking scores, underwent additional evaluation. Molecular dynamics simulations for 200 ns were conducted to assess the dynamic stability of these complexes in a solvent environment. Furthermore, methods such as MM-GBSA, PCA, and free energy landscape analysis were used to analyze the system's energetics and identify stable conformations by locating transition states. The findings suggest that these compounds exhibit promising binding capabilities to HCV polymerase and could be considered for future experimental validation.

9.
Cell Biochem Funct ; 42(4): e4030, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38720663

ABSTRACT

Diabetes mellitus (DM) is a collection of metabolic disorder that is characterized by chronic hyperglycemia. Recent studies have demonstrated the crucial involvement of oxidative stress (OS) and inflammatory reactions in the development of DM. Curcumin (CUR), a natural compound derived from turmeric, exerts beneficial effects on diabetes mellitus through its interaction with the nuclear factor kappa B (NF-κB) pathway. Research indicates that CUR targets inflammatory mediators in diabetes, including tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6), by modulating the NF-κB signaling pathway. By reducing the expression of these inflammatory factors, CUR demonstrates protective effects in DM by improving pancreatic ß-cells function, normalizing inflammatory cytokines, reducing OS and enhancing insulin sensitivity. The findings reveal that CUR administration effectively lowered blood glucose elevation, reinstated diminished serum insulin levels, and enhanced body weight in Streptozotocin -induced diabetic rats. CUR exerts its beneficial effects in management of diabetic complications through regulation of signaling pathways, such as calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII), peroxisome proliferator-activated receptor gamma (PPAR-γ), NF-κB, and transforming growth factor ß1 (TGFB1). Moreover, CUR reversed the heightened expression of inflammatory cytokines (TNF-α, Interleukin-1 beta (IL-1ß), IL-6) and chemokines like MCP-1 in diabetic specimens, vindicating its anti-inflammatory potency in counteracting hyperglycemia-induced alterations. CUR diminishes OS, avert structural kidney damage linked to diabetic nephropathy, and suppress NF-κB activity. Furthermore, CUR exhibited a protective effect against diabetic cardiomyopathy, lung injury, and diabetic gastroparesis. Conclusively, the study posits that CUR could potentially offer therapeutic benefits in relieving diabetic complications through its influence on the NF-κB pathway.


Subject(s)
Curcumin , Diabetes Mellitus, Experimental , Diabetes Mellitus , NF-kappa B , Oxidative Stress , NF-kappa B/metabolism , Curcumin/chemistry , Curcumin/pharmacology , Curcumin/therapeutic use , Oxidative Stress/drug effects , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Inflammation/drug therapy , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Insulin/blood , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Streptozocin , Blood Glucose/drug effects , Signal Transduction/drug effects , Animals , Rats , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Chemokine CCL2/metabolism , Diabetic Cardiomyopathies/prevention & control , Gastroparesis/prevention & control , Diabetic Neuropathies/prevention & control , Mice
10.
Microvasc Res ; 154: 104691, 2024 07.
Article in English | MEDLINE | ID: mdl-38703993

ABSTRACT

Neoadjuvant targeting of tumor angiogenesis has been developed and approved for the treatment of malignant tumors. However, vascular disruption leads to tumor hypoxia, which exacerbates the treatment process and causes drug resistance. In addition, successful delivery of therapeutic agents and efficacy of radiotherapy require normal vascular networks and sufficient oxygen, which complete tumor vasculopathy hinders their efficacy. In view of this controversy, an optimal dose of FDA-approved anti-angiogenic agents and combination with other therapies, such as immunotherapy and the use of nanocarrier-mediated targeted therapy, could improve therapeutic regimens, reduce the need for administration of high doses of chemotherapeutic agents and subsequently reduce side effects. Here, we review the mechanism of anti-angiogenic agents, highlight the challenges of existing therapies, and present how the combination of immunotherapies and nanomedicine could improve angiogenesis-based tumor treatment.


Subject(s)
Angiogenesis Inhibitors , Immunotherapy , Neoplasms , Neovascularization, Pathologic , Humans , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/blood supply , Neoplasms/drug therapy , Animals , Tumor Microenvironment , Nanomedicine , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/therapeutic use , Angiogenesis
11.
Pathol Res Pract ; 256: 155189, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452581

ABSTRACT

When the expression levels of metastasis suppressor-1 (MTSS1) were discovered to be downregulated in a metastatic cancer cell line in 2002, it was proposed that MTSS1 functioned as a suppressor of metastasis. The 755 amino acid long protein MTSS1 connects to actin and organizes the cytoskeleton. Its gene is located on human chromosome 8q24. The suppressor of metastasis in metastatic cancer was first found to be MTSS1. Subsequent reports revealed that MTSS1 is linked to the prevention of metastasis in a variety of cancer types, including hematopoietic cancers like diffuse large B cell lymphoma and esophageal, pancreatic, and stomach cancers. Remarkably, conflicting results have also been documented. For instance, it has been reported that MTSS1 expression levels are elevated in a subset of melanomas, hepatocellular carcinoma associated with hepatitis B, head and neck squamous cell carcinoma, and lung squamous cell carcinoma. This article provides an overview of the pathological effects of lncRNA MTSS1 dysregulation in cancer. In order to facilitate the development of MTSS1-based therapeutic targeting, we also shed light on the current understanding of MTS1.


Subject(s)
Liver Neoplasms , RNA, Long Noncoding , Humans , Cell Movement/genetics , Liver Neoplasms/genetics , Microfilament Proteins/metabolism , Neoplasm Invasiveness/pathology , Neoplasm Proteins/metabolism , RNA, Long Noncoding/genetics
12.
Cell Biochem Funct ; 42(2): e3971, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38509767

ABSTRACT

Autophagy, as a highly conserved cellular process, participates in cellular homeostasis by degradation and recycling of damaged organelles and proteins. Besides, autophagy has been evidenced to play a dual role through cancer initiation and progression. In the early stage, it may have a tumor-suppressive function through inducing apoptosis and removing damaged cells and organelles. However, late stages promote tumor progression by maintaining stemness features and induction of chemoresistance. Therefore, identifying and targeting molecular mechanisms involved in autophagy is a potential therapeutic strategy for human cancers. Multiple transcription factors (TFs) are involved in the regulation of autophagy by modulating the expression of autophagy-related genes (ATGs). In addition, a wide array of long noncoding RNAs (lncRNAs), a group of regulatory ncRNAs, have been evidenced to regulate the function of these autophagy-related TFs through tumorigenesis. Subsequently, the lncRNAs/TFs/ATGs axis shows great potential as a therapeutic target for human cancers. Therefore, this review aimed to summarize new findings about the role of lncRNAs in regulating autophagy-related TFs with therapeutic perspectives.


Subject(s)
Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcription Factors/genetics , Neoplasms/genetics , Apoptosis , Autophagy
13.
Cell Biochem Funct ; 42(2): e3935, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38379260

ABSTRACT

50% of cases of infertility are caused by male factor, which acquired or congenital problems may bring on. Male infertility can be caused by oligospermia and asthenozoospermia, which are common. Since the same mutations that cause azoospermia in some people also cause oligozoospermia in others, oligozoospermia may be thought of as a less severe form of azoospermia. Studies have demonstrated telomere length, catalase activity, super oxide dismutase (SOD), and DNA fragmentation can be influential factors for male infertility. The amount of apoptosis, oxidative stress factors, telomere length, and DNA fragmentation were some aspects of healthy sperm that we chose to look into in this study and compare to oligospermia individuals. Oligospermia patients (n = 24) and fertile men (n = 27) semen samples were collected, and the apoptosis rate of sperms in both groups was analyzed (Flow cytometry). Also, gene expression of apoptotic and antiapoptotic markers and telomere length were examined (real-time polymerase chain reaction). The sperm DNA fragmentation kit was used to determine DNA fragmentation and to evaluate catalase and SOD activity; the specific kits and methods were utilized. Higher expression levels of caspase3 (p = .0042), caspase8 (p = .0145), caspase9 (p = .0275), and BAX (p = .0202) mRNA were observed in patients who had oligospermia. In contrast, lower mRNA expression of BCL-2 (p = .0009) was detected in this group. In addition, telomere length was decreased in the oligospermia group (p < .0001) compared to the health group. Moreover, the frequency of apoptosis is induced in patients (p = .0026). The catalase activity is low (p = .0008), but the SOD activity is high (p = .0015) in the patient group. As a result of our findings, we may list the sperm cell apoptosis rate, telomere length, the degree of sperm DNA fragmentation, and lastly, the measurement of significant and efficient oxidative stress markers like SOD and catalase in semen plasma among the principal diagnostic characteristics for oligospermia. Future studies will be better able to treat oligospermia by showing whether these indicators are rising or falling.


Subject(s)
Azoospermia , Infertility, Male , Oligospermia , Humans , Male , Oligospermia/genetics , Oligospermia/metabolism , Reactive Oxygen Species/metabolism , Catalase/genetics , Catalase/metabolism , Azoospermia/metabolism , Semen/metabolism , Spermatozoa/metabolism , Infertility, Male/genetics , Infertility, Male/diagnosis , Infertility, Male/metabolism , Antioxidants/metabolism , DNA Fragmentation , Apoptosis , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Telomere/metabolism , RNA, Messenger/metabolism
14.
CNS Neurosci Ther ; 30(3): e14473, 2024 03.
Article in English | MEDLINE | ID: mdl-37904726

ABSTRACT

BACKGROUND: Gemfibrozil (Gem) is a drug that has been shown to activate PPAR-α, a nuclear receptor that plays a key role in regulating lipid metabolism. Gem is used to lower the levels of triglycerides and reduce the risk of coronary heart disease in patients. Experimental studies in vitro and in vivo have shown that Gem can prevent or slow the progression of neurological disorders (NDs), including cerebral ischemia (CI), Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Neuroinflammation is known to play a significant role in these disorders. METHOD: The literature review for this study was conducted by searching Scopus, Science Direct, PubMed, and Google Scholar databases. RESULT: The results of this study show that Gem has neuroprotective effects through several cellular and molecular mechanisms such as: (1) Gem has the ability to upregulate pro-survival factors (PGC-1α and TFAM), promoting the survival and function of mitochondria in the brain, (2) Gem strongly inhibits the activation of NF-κB, AP-1, and C/EBPß in cytokine-stimulated astroglial cells, which are known to increase the expression of iNOS and the production of NO in response to proinflammatory cytokines, (3) Gem protects dopamine neurons in the MPTP mouse model of PD by increasing the expression of PPARα, which in turn stimulates the production of GDNF in astrocytes, (4) Gem reduces amyloid plaque pathology, reduces the activity of glial cells, and improves memory, (5) Gem increases myelin genes expression (MBP and CNPase) via PPAR-ß, and (6) Gem increases hippocampal BDNF to counteract depression. CONCLUSION: According to the study, Gem was investigated for its potential therapeutic effect in NDs. Further research is needed to fully understand the therapeutic potential of Gem in NDs.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Animals , Mice , Humans , Gemfibrozil/pharmacology , Gemfibrozil/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Inflammation/drug therapy , Parkinson Disease/drug therapy , PPAR alpha , Cytokines
15.
Eur J Neurosci ; 59(2): 283-297, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043936

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, leading to various motor and non-motor symptoms. Several cellular and molecular mechanisms such as alpha-synuclein (α-syn) accumulation, mitochondrial dysfunction, oxidative stress and neuroinflammation are involved in the pathogenesis of this disease. MicroRNAs (miRNAs) play important roles in post-transcriptional gene regulation. They are typically about 21-25 nucleotides in length and are involved in the regulation of gene expression by binding to the messenger RNA (mRNA) molecules. miRNAs like miR-221 play important roles in various biological processes, including development, cell proliferation, differentiation and apoptosis. miR-221 promotes neuronal survival against oxidative stress and neurite outgrowth and neuronal differentiation. Additionally, the role of miR-221 in PD has been investigated in several studies. According to the results of these studies, (1) miR-221 protects PC12 cells against oxidative stress induced by 6-hydroxydopamine; (2) miR-221 prevents Bax/caspase-3 signalling activation by stopping Bim; (3) miR-221 has moderate predictive power for PD; (4) miR-221 directly targets PTEN, and PTEN over-expression eliminates the protective action of miR-221 on p-AKT expression in PC12 cells; and (5) miRNA-221 controls cell viability and apoptosis by manipulating the Akt signalling pathway in PD. This review study suggested that miR-221 has the potential to be used as a clinical biomarker for PD diagnosis and stage assignment.


Subject(s)
MicroRNAs , Parkinson Disease , Rats , Animals , Humans , Parkinson Disease/metabolism , Proto-Oncogene Proteins c-akt/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Apoptosis , Dopaminergic Neurons/metabolism , Biomarkers/metabolism
16.
Cell Biochem Funct ; 42(1): e3904, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38102946

ABSTRACT

The regulation of signal transmission and biological processes, such as cell proliferation, apoptosis, metabolism, migration, and angiogenesis are greatly influenced by the PI3K/AKT signaling pathway. Highly conserved endogenous non-protein-coding RNAs known as microRNAs (miRNAs) have the ability to regulate gene expression by inhibiting mRNA translation or mRNA degradation. MiRNAs serve key role in PI3K/AKT pathway as upstream or downstream target, and aberrant activation of this pathway contributes to the development of cancers. A growing body of research shows that miRNAs can control the PI3K/AKT pathway to control the biological processes within cells. The expression of genes linked to cancers can be controlled by the miRNA/PI3K/AKT axis, which in turn controls the development of cancer. There is also a strong correlation between the expression of miRNAs linked to the PI3K/AKT pathway and numerous clinical traits. Moreover, PI3K/AKT pathway-associated miRNAs are potential biomarkers for cancer diagnosis, therapy, and prognostic evaluation. The role and clinical applications of the PI3K/AKT pathway and miRNA/PI3K/AKT axis in the emergence of cancers are reviewed in this article.


Subject(s)
MicroRNAs , Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/genetics , Neoplasms/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Apoptosis/genetics , Cell Line, Tumor
17.
Front Genet ; 14: 1280051, 2023.
Article in English | MEDLINE | ID: mdl-38090147

ABSTRACT

Background: An increasing number of studies have suggested the relationship between single-nucleotide polymorphisms (SNPs) in toll-like receptor (TLR) genes and gastric cancer (GC) susceptibility; however, the available evidence is contradictory. This meta-analysis aimed to comprehensively evaluate whether the SNPs within the TLR family are related to GC development. Methods: PubMed, Scopus, and China National Knowledge Infrastructure (CNKI) were systematically searched up to May 2023 to obtain the pertinent publications. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were applied to examine the associations using the random-effects model. Results: A total of 45 studies with 25,831 participants (cases: 11,308; controls: 14,523) examining the relation of 18 different SNPs in the TLR family to GC were analyzed. Variations in TLR-4 rs4986790, TLR-4 rs4986791, TLR-5 rs5744174, and TLR-9 rs187084 were significantly associated with increased risk of GC in different genetic models. No significant association was detected for TLR-2-196 to -174de (Delta22), TLR-2 rs3804100, TLR-4 rs11536889, TLR-4 rs11536878, TLR-4 rs2770150, TLR-4 rs10116253, TLR-4 rs1927911, TLR-4 rs10983755, TLR-4 rs10759932, TLR-4 rs1927914, and TLR-10 rs10004195. Conclusion: These findings indicate that variations in TLR-4, TLR-5, and TLR-9 genes were found to be potential risk factors for GC.

18.
Med Oncol ; 40(11): 313, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37779152

ABSTRACT

Treatment with chimeric antigen receptor (CAR) T cells indicated remarkable clinical responses with liquid cancers such as hematological malignancies; however, their therapeutic efficacy faced with many challenges in solid tumors due to severe toxicities, antigen evasion, restricted and limited tumor tissue trafficking and infiltration, and, more importantly, immunosuppressive tumor microenvironment (TME) factors that impair the CAR T-cell function adds support survival of cancer stem cells (CSCs), responsible for tumor recurrence and resistance to current cancer therapies. Therefore, in-depth identification of TME and development of more potent CAR platform targeting CSCs may overcome the raised challenges, as presented in this review. We also discuss recent stemness-based innovations in CAR T-cell production and engineering to improve their efficacy in vivo, and finally, we propose solutions and strategies such as oncolytic virus-based therapy and combination therapy to revive the function of CAR T-cell therapy, especially in TME of solid tumors in future.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Neoplasm Recurrence, Local , Neoplasms/pathology , Immunotherapy, Adoptive , Immunotherapy , T-Lymphocytes , Tumor Microenvironment
19.
Sci Rep ; 13(1): 16800, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37798276

ABSTRACT

According to recent studies on the benefits of natural polymer-based hydrogels in biomedical applications, gellan gum (GG)/acacia gum (AG) hydrogel was prepared in this study. In order to regulate the mechanical behavior of the hydrogel, graphite carbon nitride (g-C3N4) was included in the hydrogel matrix. In addition, metal oxide nanoparticles ZnCuFe2O4 were added to the composite for antibacterial activity. The prepared GG-AG hydrogel/g-C3N4/ZnCuFe2O4 nanobiocomposite was characterized by using FE-SEM, FTIR, EDX, XRD and TGA. The nanobiocomposite exhibited spherical morphology, which was related to the incorporation of the metal oxide nanoparticles. GG-AG hydrogel/g-C3N4/ZnCuFe2O4 nanobiocomposite showed 95.11%, 92.73% and 88.97% biocompatibility toward HEK293T cell lines within 24 h, 48 h and 72 h incubation, respectively, which indicates that this nanobiocomposite is completely biocompatible with healthy cells. Also, the nanobiocomposite was able to inhibit Pseudomonas aeruginosa biofilm growth on its surface up to 87%. Rheological studies showed that the nanobiocomposite has a viscoelastic structure and has a water uptake ratio of 93.2%. In comparison with other similar studies, this nanobiocomposite has exhibited superior antibacterial activity complete biocompatibility and proper mechanical properties, high swelling and water absorption capability. These results indicate that GG-AG hydrogel/g-C3N4/ZnCuFe2O4 nanocomposite can be considered as a potential candidate for biomedical applications such as tissue engineering and wound healing.


Subject(s)
Metal Nanoparticles , Nanocomposites , Humans , Hydrogels/pharmacology , Hydrogels/chemistry , Polymers , HEK293 Cells , Oxides , Water , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
20.
Pathol Res Pract ; 251: 154848, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37862919

ABSTRACT

Despite the development of numerous therapies, cancer remains an incurable disease due to various factors, including drug resistance produced by cancer cells. MicroRNAs (miRNAs) regulate different target genes involved in biological and pathological processes, including cancer, through post-transcriptional mechanisms. The development of drug resistance in cancer treatment is a significant barrier because it decreases drug uptake, cellular transport, and changes in proteins involved in cell proliferation, survival, and apoptotic pathways. Numerous studies have found a connection between miRNAs and the development of drug resistance in cancer cells. This paper provides a broad overview of how miRNAs regulate signaling pathways and influence treatment resistance in different cancers.


Subject(s)
MicroRNAs , Neoplasms , Humans , MicroRNAs/metabolism , Comprehension , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL