Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
BMC Infect Dis ; 24(1): 483, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730352

ABSTRACT

BACKGROUND: Monkeypox (Mpox) is an important human pathogen without etiological treatment. A viral-host interactome study may advance our understanding of molecular pathogenesis and lead to the discovery of suitable therapeutic targets. METHODS: GEO Expression datasets characterizing mRNA profile changes in different host responses to poxviruses were analyzed for shared pathway identification, and then, the Protein-protein interaction (PPI) maps were built. The viral gene expression datasets of Monkeypox virus (MPXV) and Vaccinia virus (VACV) were used to identify the significant viral genes and further investigated for their binding to the library of targeting molecules. RESULTS: Infection with MPXV interferes with various cellular pathways, including interleukin and MAPK signaling. While most host differentially expressed genes (DEGs) are predominantly downregulated upon infection, marked enrichments in histone modifiers and immune-related genes were observed. PPI analysis revealed a set of novel virus-specific protein interactions for the genes in the above functional clusters. The viral DEGs exhibited variable expression patterns in three studied cell types: primary human monocytes, primary human fibroblast, and HeLa, resulting in 118 commonly deregulated proteins. Poxvirus proteins C6R derived protein K7 and K7R of MPXV and VACV were prioritized as targets for potential therapeutic interventions based on their histone-regulating and immunosuppressive properties. In the computational docking and Molecular Dynamics (MD) experiments, these proteins were shown to bind the candidate small molecule S3I-201, which was further prioritized for lead development. RESULTS: MPXV circumvents cellular antiviral defenses by engaging histone modification and immune evasion strategies. C6R-derived protein K7 binding candidate molecule S3I-201 is a priority promising candidate for treating Mpox.


Subject(s)
Host-Pathogen Interactions , Monkeypox virus , Vaccinia virus , Viral Proteins , Humans , Viral Proteins/genetics , Viral Proteins/metabolism , Vaccinia virus/genetics , Vaccinia virus/metabolism , HeLa Cells , Monkeypox virus/genetics , Mpox (monkeypox)/virology , Protein Interaction Maps , Gene Expression Profiling , Molecular Docking Simulation , Poxviridae/genetics , Poxviridae/metabolism , Fibroblasts/virology , Fibroblasts/metabolism
2.
Sci Rep ; 14(1): 10215, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702403

ABSTRACT

Weeds pose a major constraint in lentil cultivation, leading to decrease farmers' revenues by reducing the yield and increasing the management costs. The development of herbicide tolerant cultivars is essential to increase lentil yield. Even though herbicide tolerant lines have been identified in lentils, breeding efforts are still limited and lack proper validation. Marker assisted selection (MAS) can increase selection accuracy at early generations. Total 292 lentil accessions were evaluated under different dosages of two herbicides, metribuzin and imazethapyr, during two seasons at Marchouch, Morocco and Terbol, Lebanon. Highly significant differences among accessions were observed for days to flowering (DF) and maturity (DM), plant height (PH), biological yield (BY), seed yield (SY), number of pods per plant (NP), as well as the reduction indices (RI) for PH, BY, SY and NP. A total of 10,271 SNPs markers uniformly distributed along the lentil genome were assayed using Multispecies Pulse SNP chip developed at Agriculture Victoria, Melbourne. Meta-GWAS analysis was used to detect marker-trait associations, which detected 125 SNPs markers associated with different traits and clustered in 85 unique quantitative trait loci. These findings provide valuable insights for initiating MAS programs aiming to enhance herbicide tolerance in lentil crop.


Subject(s)
Herbicide Resistance , Herbicides , Lens Plant , Polymorphism, Single Nucleotide , Lens Plant/genetics , Lens Plant/drug effects , Lens Plant/growth & development , Herbicides/pharmacology , Herbicides/toxicity , Herbicide Resistance/genetics , Genome-Wide Association Study , Genes, Plant , Quantitative Trait Loci
3.
Front Plant Sci ; 15: 1260690, 2024.
Article in English | MEDLINE | ID: mdl-38525151

ABSTRACT

Chickpea, renowned for its exceptional nutritional value, stands as a crucial crop, serving as a dietary staple in various parts of the world. However, its productivity faces a significant challenge in the form of drought stress. This challenge highlights the urgent need to find genetic markers linked to drought tolerance for effective breeding programs. The primary objective of this study is to identify genetic markers associated with drought tolerance to facilitate effective breeding programs. To address this, we cultivated 185 chickpea accessions in two distinct locations in Lebanon over a two-year period, subjecting them to both irrigated and rain-fed environments. We assessed 11 drought-linked traits, including morphology, growth, yield, and tolerance score. SNP genotyping revealed 1344 variable SNP markers distributed across the chickpea genome. Genetic diversity across populations originating from diverse geographic locations was unveiled by the PCA, clustering, and structure analysis indicating that these genotypes have descend from five or four distinct ancestors. A genome-wide association study (GWAS) revealed several marker trait associations (MTAs) associated with the traits evaluated. Within the rainfed conditions, 11 significant markers were identified, each associated with distinct chickpea traits. Another set of 11 markers exhibited associations in both rainfed and irrigated environments, reflecting shared genetic determinants across these conditions for the same trait. The analysis of linkage disequilibrium (LD) highlighted two genomic regions with notably strong LD, suggesting significant interconnections among several investigated traits. This was further investigated by the correlation between major markers associated with these traits. Gene annotation of the identified markers has unveiled insights into 28 potential genes that play a role in influencing various chickpea drought-linked traits. These traits encompass crucial aspects such as blooming organ development, plant growth, seed weight, starch metabolism, drought regulation, and height index. Among the identified genes are CPN60-2, hsp70, GDSL(GELP), AHL16, NAT3, FAB1B, bZIP, and GL21. These genes collectively contribute to the multifaceted response of chickpea plants to drought stress. Our identified genetic factors exert their influence in both irrigated and rainfed environments, emphasizing their importance in shaping chickpea characteristics.

5.
Metab Brain Dis ; 39(1): 29-42, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38153584

ABSTRACT

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by altered brain connectivity and function. In this study, we employed advanced bioinformatics and explainable AI to analyze gene expression associated with ASD, using data from five GEO datasets. Among 351 neurotypical controls and 358 individuals with autism, we identified 3,339 Differentially Expressed Genes (DEGs) with an adjusted p-value (≤ 0.05). A subsequent meta-analysis pinpointed 342 DEGs (adjusted p-value ≤ 0.001), including 19 upregulated and 10 down-regulated genes across all datasets. Shared genes, pathogenic single nucleotide polymorphisms (SNPs), chromosomal positions, and their impact on biological pathways were examined. We identified potential biomarkers (HOXB3, NR2F2, MAPK8IP3, PIGT, SEMA4D, and SSH1) through text mining, meriting further investigation. Additionally, we shed light on the roles of RPS4Y1 and KDM5D genes in neurogenesis and neurodevelopment. Our analysis detected 1,286 SNPs linked to ASD-related conditions, of which 14 high-risk SNPs were located on chromosomes 10 and X. We highlighted potential missense SNPs associated with FGFR inhibitors, suggesting that it may serve as a promising biomarker for responsiveness to targeted therapies. Our explainable AI model identified the MID2 gene as a potential ASD biomarker. This research unveils vital genes and potential biomarkers, providing a foundation for novel gene discovery in complex diseases.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Humans , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/genetics , Biomarkers , Brain , Genomics , Minor Histocompatibility Antigens , Histone Demethylases
6.
PLoS One ; 18(9): e0291204, 2023.
Article in English | MEDLINE | ID: mdl-37729135

ABSTRACT

Multiple sequence alignment (MSA) is essential for understanding genetic variations controlling phenotypic traits in all living organisms. The post-analysis of MSA results is a difficult step for researchers who do not have programming skills. Especially those working with large scale data and looking for potential variations or variable sample groups. Generating bi-allelic data and the comparison of wild and alternative gene forms are important steps in population genetics. Customising MSA visualisation for a single page view is difficult, making viewing potential indels and variations challenging. There are currently no bioinformatics tools that permit post-MSA analysis, in which data on gene and single nucleotide scales could be combined with gene annotations and used for cluster analysis. We introduce "AlignStatPlot," a new R package and online tool that is well-documented and easy-to use for MSA and post-MSA analysis. This tool performs both traditional and cutting-edge analyses on sequencing data and generates new visualisation methods for MSA results. When compared to currently available tools, AlignStatPlot provides a robust ability to handle and visualise diversity data, while the online version will save time and encourage researchers to focus on explaining their findings. It is a simple tool that can be used in conjunction with population genetics software.


Subject(s)
Big Data , Computational Biology , Sequence Alignment , Alleles , Cluster Analysis
7.
PLoS One ; 18(8): e0289891, 2023.
Article in English | MEDLINE | ID: mdl-37590197

ABSTRACT

New evidence strongly discloses the pathogenesis of host-associated microbiomes in respiratory diseases. The microbiome dysbiosis modulates the lung's behavior and deteriorates the respiratory system's effective functioning. Several exogenous and environmental factors influence the development of asthma and chronic lung disease. The relationship between asthma and microbes is reasonably understood and yet to be investigated for more substantiation. The comorbidities such as SARS-CoV-2 further exacerbate the health condition of the asthma-affected individuals. This study examines the raw 16S rRNA sequencing data collected from the saliva and nasopharyngeal regions of pre-existing asthma (23) and non-asthma patients (82) infected by SARS-CoV-2 acquired from the public database. The experiment is designed in a two-fold pattern, analyzing the associativity between the samples collected from the saliva and nasopharyngeal regions. Later, investigates the microbial pathogenesis, its role in exacerbations of respiratory disease, and deciphering the diagnostic biomarkers of the target condition. LEfSE analysis identified that Actinobacteriota and Pseudomonadota are enriched in the SARS-CoV-2-non-asthma group and SARS-CoV-2 asthma group of the salivary microbiome, respectively. Random forest algorithm is trained with amplicon sequence variants (ASVs) attained better classification accuracy, ROC scores on nasal (84% and 87%) and saliva datasets (93% and 97.5%). Rothia mucilaginosa is less abundant, and Corynebacterium tuberculostearicum showed higher abundance in the SARS-CoV-2 asthma group. The increase in Streptococcus at the genus level in the SARS-CoV-2-asthma group is evidence of discriminating the subgroups.


Subject(s)
Asthma , COVID-19 , Microbiota , Humans , SARS-CoV-2/genetics , RNA, Ribosomal, 16S/genetics , Nose , Microbiota/genetics , Lung
8.
Front Genet ; 14: 1187597, 2023.
Article in English | MEDLINE | ID: mdl-37408775

ABSTRACT

Grass pea is a promising crop with the potential to provide food and fodder, but its genomics has not been adequately explored. Identifying genes for desirable traits, such as drought tolerance and disease resistance, is critical for improving the plant. Grass pea currently lacks known R-genes, including the nucleotide-binding site-leucine-rich repeat (NBS-LRR) gene family, which plays a key role in protecting the plant from biotic and abiotic stresses. In our study, we used the recently published grass pea genome and available transcriptomic data to identify 274 NBS-LRR genes. The evolutionary relationships between the classified genes on the reported plants and LsNBS revealed that 124 genes have TNL domains, while 150 genes have CNL domains. All genes contained exons, ranging from 1 to 7. Ten conserved motifs with lengths ranging from 16 to 30 amino acids were identified. We found TIR-domain-containing genes in 132 LsNBSs, with 63 TIR-1 and 69 TIR-2, and RX-CCLike in 84 LsNBSs. We also identified several popular motifs, including P-loop, Uup, kinase-GTPase, ABC, ChvD, CDC6, Rnase_H, Smc, CDC48, and SpoVK. According to the gene enrichment analysis, the identified genes undergo several biological processes such as plant defense, innate immunity, hydrolase activity, and DNA binding. In the upstream regions, 103 transcription factors were identified that govern the transcription of nearby genes affecting the plant excretion of salicylic acid, methyl jasmonate, ethylene, and abscisic acid. According to RNA-Seq expression analysis, 85% of the encoded genes have high expression levels. Nine LsNBS genes were selected for qPCR under salt stress conditions. The majority of the genes showed upregulation at 50 and 200 µM NaCl. However, LsNBS-D18, LsNBS-D204, and LsNBS-D180 showed reduced or drastic downregulation compared to their respective expression levels, providing further insights into the potential functions of LsNBSs under salt stress conditions. They provide valuable insights into the potential functions of LsNBSs under salt stress conditions. Our findings also shed light on the evolution and classification of NBS-LRR genes in legumes, highlighting the potential of grass pea. Further research could focus on the functional analysis of these genes, and their potential use in breeding programs to improve the salinity, drought, and disease resistance of this important crop.

9.
Biomed Pharmacother ; 163: 114832, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37150032

ABSTRACT

Several proteins and peptides have therapeutic potential and can be used for cancer therapy. By binding to cell surface receptors and other indicators uniquely linked with or overexpressed on tumors compared to healthy tissue, protein biologics enhance the active targeting of cancer cells, as opposed to the passive targeting of cells by conventional small-molecule chemotherapeutics. This study focuses on peptide medications that exist to slow or stop tumor growth and the spread of cancer, demonstrating the therapeutic potential of peptides in cancer treatment. As an alternative to standard chemotherapy, peptides that selectively kill cancer cells while sparing healthy tissue are developing. A mountain of clinical evidence supports the efficacy of peptide-based cancer vaccines. Since a single treatment technique may not be sufficient to produce favourable results in the fight against cancer, combination therapy is emerging as an effective option to generate synergistic benefits. One example of this new area is the use of anticancer peptides in combination with nonpeptidic cytotoxic drugs or the combination of immunotherapy with conventional therapies like radiation and chemotherapy. This review focuses on the different natural and synthetic peptides obtained and researched. Discoveries, manufacture, and modifications of peptide drugs, as well as their contemporary applications, are summarized in this review. We also discuss the benefits and difficulties of potential advances in therapeutic peptides.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Peptides/therapeutic use , Proteins , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Immunotherapy/methods
10.
Front Med (Lausanne) ; 10: 1154417, 2023.
Article in English | MEDLINE | ID: mdl-37081847

ABSTRACT

Introduction: Osteosarcoma is a rare disorder among cancer, but the most frequently occurring among sarcomas in children and adolescents. It has been reported to possess the relapsing capability as well as accompanying collateral adverse effects which hinder the development process of an effective treatment plan. Using networks of omics data to identify cancer biomarkers could revolutionize the field in understanding the cancer. Cancer biomarkers and the molecular mechanisms behind it can both be understood by studying the biological networks underpinning the etiology of the disease. Methods: In our study, we aimed to highlight the hub genes involved in gene-gene interaction network to understand their interaction and how they affect the various biological processes and signaling pathways involved in Osteosarcoma. Gene interaction network provides a comprehensive overview of functional gene analysis by providing insight into how genes cooperatively interact to elicit a response. Because gene interaction networks serve as a nexus to many biological problems, their employment of it to identify the hub genes that can serve as potential biomarkers remain widely unexplored. A dynamic framework provides a clear understanding of biological complexity and a pathway from the gene level to interaction networks. Results: Our study revealed various hub genes viz. TP53, CCND1, CDK4, STAT3, and VEGFA by analyzing various topological parameters of the network, such as highest number of interactions, average shortest path length, high cluster density, etc. Their involvement in key signaling pathways, such as the FOXM1 transcription factor network, FAK-mediated signaling events, and the ATM pathway, makes them significant candidates for studying the disease. The study also highlighted significant enrichment in GO terms (Biological Processes, Molecular Function, and Cellular Processes), such as cell cycle signal transduction, cell communication, kinase binding, transcription factor activity, nucleoplasm, PML body, nuclear body, etc. Conclusion: To develop better therapeutics, a specific approach toward the disease targeting the hub genes involved in various signaling pathways must have opted to unravel the complexity of the disease. Our study has highlighted the candidate hub genes viz. TP53, CCND1 CDK4, STAT3, VEGFA. Their involvement in the major signaling pathways of Osteosarcoma makes them potential candidates to be targeted for drug development. The highly enriched signaling pathways include FOXM1 transcription pathway, ATM signal-ling pathway, FAK mediated signaling events, Arf6 signaling events, mTOR signaling pathway, and Integrin family cell surface interactions. Targeting the hub genes and their associated functional partners which we have reported in our studies may be efficacious in developing novel therapeutic targets.

11.
Front Genet ; 14: 1128992, 2023.
Article in English | MEDLINE | ID: mdl-37021003

ABSTRACT

Background: The basic helix-loop-helix (bHLH) transcription factor is a vital component in plant biology, with a significant impact on various aspects of plant growth, cell development, and physiological processes. Grass pea is a vital agricultural crop that plays a crucial role in food security. However, the lack of genomic information presents a major challenge to its improvement and development. This highlights the urgency for deeper investigation into the function of bHLH genes in grass pea to improve our understanding of this important crop. Results: The identification of bHLH genes in grass pea was performed on a genome-wide scale using genomic and transcriptomic screening. A total of 122 genes were identified as having conserved bHLH domains and were functionally and fully annotated. The LsbHLH proteins could be classified into 18 subfamilies. There were variations in intron-exon distribution, with some genes lacking introns. The cis-element and gene enrichment analyses showed that the LsbHLHs were involved in various plant functions, including response to phytohormones, flower and fruit development, and anthocyanin synthesis. A total of 28 LsbHLHs were found to have cis-elements associated with light response and endosperm expression biosynthesis. Ten conserved motifs were identified across the LsbHLH proteins. The protein-protein interaction analysis showed that all LsbHLH proteins interacted with each other, and nine of them displayed high levels of interaction. RNA-seq analysis of four Sequence Read Archive (SRA) experiments showed high expression levels of LsbHLHs across a range of environmental conditions. Seven highly expressed genes were selected for qPCR validation, and their expression patterns in response to salt stress showed that LsbHLHD4, LsbHLHD5, LsbHLHR6, LsbHLHD8, LsbHLHR14, LsbHLHR68, and LsbHLHR86 were all expressed in response to salt stress. Conclusion: The study provides an overview of the bHLH family in the grass pea genome and sheds light on the molecular mechanisms underlying the growth and evolution of this crop. The report covers the diversity in gene structure, expression patterns, and potential roles in regulating plant growth and response to environmental stress factors in grass pea. The identified candidate LsbHLHs could be utilized as a tool to enhance the resilience and adaptation of grass pea to environmental stress.

12.
Genes (Basel) ; 14(4)2023 04 18.
Article in English | MEDLINE | ID: mdl-37107694

ABSTRACT

Microbial Dysbiosis is associated with the etiology and pathogenesis of diseases. The studies on the vaginal microbiome in cervical cancer are essential to discern the cause and effect of the condition. The present study characterizes the microbial pathogenesis involved in developing cervical cancer. Relative species abundance assessment identified Firmicutes, Actinobacteria, and Proteobacteria dominating the phylum level. A significant increase in Lactobacillus iners and Prevotella timonensis at the species level revealed its pathogenic influence on cervical cancer progression. The diversity, richness, and dominance analysis divulges a substantial decline in cervical cancer compared to control samples. The ß diversity index proves the homogeneity in the subgroups' microbial composition. The association between enriched Lactobacillus iners at the species level, Lactobacillus, Pseudomonas, and Enterococcus genera with cervical cancer is identified by Linear discriminant analysis Effect Size (LEfSe) prediction. The functional enrichment corroborates the microbial disease association with pathogenic infections such as aerobic vaginitis, bacterial vaginosis, and chlamydia. The dataset is trained and validated with repeated k-fold cross-validation technique using a random forest algorithm to determine the discriminative pattern from the samples. SHapley Additive exPlanations (SHAP), a game theoretic approach, is employed to analyze the results predicted by the model. Interestingly, SHAP identified that the increase in Ralstonia has a higher probability of predicting the sample as cervical cancer. New evidential microbiomes identified in the experiment confirm the presence of pathogenic microbiomes in cervical cancer vaginal samples and their mutuality with microbial imbalance.


Subject(s)
Microbiota , Uterine Cervical Neoplasms , Humans , Female , Dysbiosis , Artificial Intelligence
13.
Front Plant Sci ; 14: 1134627, 2023.
Article in English | MEDLINE | ID: mdl-36950350

ABSTRACT

LTR-retrotransposons (LTR-RTs) are a large group of transposable elements that replicate through an RNA intermediate and alter genome structure. The activities of LTR-RTs in plant genomes provide helpful information about genome evolution and gene function. LTR-RTs near or within genes can directly alter gene function. This work introduces PlantLTRdb, an intact LTR-RT database for 195 plant species. Using homology- and de novo structure-based methods, a total of 150.18 Gbp representing 3,079,469 pseudomolecules/scaffolds were analyzed to identify, characterize, annotate LTR-RTs, estimate insertion ages, detect LTR-RT-gene chimeras, and determine nearby genes. Accordingly, 520,194 intact LTR-RTs were discovered, including 29,462 autonomous and 490,732 nonautonomous LTR-RTs. The autonomous LTR-RTs included 10,286 Gypsy and 19,176 Copia, while the nonautonomous were divided into 224,906 Gypsy, 218,414 Copia, 1,768 BARE-2, 3,147 TR-GAG and 4,2497 unknown. Analysis of the identified LTR-RTs located within genes showed that a total of 36,236 LTR-RTs were LTR-RT-gene chimeras and 11,619 LTR-RTs were within pseudo-genes. In addition, 50,026 genes are within 1 kbp of LTR-RTs, and 250,587 had a distance of 1 to 10 kbp from LTR-RTs. PlantLTRdb allows researchers to search, visualize, BLAST and analyze plant LTR-RTs. PlantLTRdb can contribute to the understanding of structural variations, genome organization, functional genomics, and the development of LTR-RT target markers for molecular plant breeding. PlantLTRdb is available at https://bioinformatics.um6p.ma/PlantLTRdb.

14.
Front Plant Sci ; 14: 1039211, 2023.
Article in English | MEDLINE | ID: mdl-36993855

ABSTRACT

Pomegranate has a unique evolutionary history given that different cultivars have eight or nine bivalent chromosomes with possible crossability between the two classes. Therefore, it is important to study chromosome evolution in pomegranate to understand the dynamics of its population. Here, we de novo assembled the Azerbaijani cultivar "Azerbaijan guloyshasi" (AG2017; 2n = 16) and re-sequenced six cultivars to track the evolution of pomegranate and to compare it with previously published de novo assembled and re-sequenced cultivars. High synteny was observed between AG2017, Bhagawa (2n = 16), Tunisia (2n = 16), and Dabenzi (2n = 18), but these four cultivars diverged from the cultivar Taishanhong (2n = 18) with several rearrangements indicating the presence of two major chromosome evolution events. Major presence/absence variations were not observed as >99% of the five genomes aligned across the cultivars, while >99% of the pan-genic content was represented by Tunisia and Taishanhong only. We also revisited the divergence between soft- and hard-seeded cultivars with less structured population genomic data, compared to previous studies, to refine the selected genomic regions and detect global migration routes for pomegranate. We reported a unique admixture between soft- and hard-seeded cultivars that can be exploited to improve the diversity, quality, and adaptability of local pomegranate varieties around the world. Our study adds body knowledge to understanding the evolution of the pomegranate genome and its implications for the population structure of global pomegranate diversity, as well as planning breeding programs aiming to develop improved cultivars.

15.
Metab Brain Dis ; 38(4): 1297-1310, 2023 04.
Article in English | MEDLINE | ID: mdl-36809524

ABSTRACT

The progressive, chronic nature of Alzheimer's disease (AD), a form of dementia, defaces the adulthood of elderly individuals. The pathogenesis of the condition is primarily unascertained, turning the treatment efficacy more arduous. Therefore, understanding the genetic etiology of AD is essential to identifying targeted therapeutics. This study aimed to use machine-learning techniques of expressed genes in patients with AD to identify potential biomarkers that can be used for future therapy. The dataset is accessed from the Gene Expression Omnibus (GEO) database (Accession Number: GSE36980). The subgroups (AD blood samples from frontal, hippocampal, and temporal regions) are individually investigated against non-AD models. Prioritized gene cluster analyses are conducted with the STRING database. The candidate gene biomarkers were trained with various supervised machine-learning (ML) classification algorithms. The interpretation of the model prediction is perpetrated with explainable artificial intelligence (AI) techniques. This experiment revealed 34, 60, and 28 genes as target biomarkers of AD mapped from the frontal, hippocampal, and temporal regions. It is identified ORAI2 as a shared biomarker in all three areas strongly associated with AD's progression. The pathway analysis showed that STIM1 and TRPC3 are strongly associated with ORAI2. We found three hub genes, TPI1, STIM1, and TRPC3, in the network of the ORAI2 gene that might be involved in the molecular pathogenesis of AD. Naive Bayes classified the samples of different groups by fivefold cross-validation with 100% accuracy. AI and ML are promising tools in identifying disease-associated genes that will advance the field of targeted therapeutics against genetic diseases.


Subject(s)
Alzheimer Disease , Humans , Adult , Aged , Alzheimer Disease/metabolism , Artificial Intelligence , Bayes Theorem , Computational Biology/methods , Biomarkers , Gene Expression , ORAI2 Protein/genetics
16.
Metabolites ; 13(1)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36677054

ABSTRACT

As a complex endocrine and metabolic condition, polycystic ovarian syndrome (PCOS) affects women's reproductive health. These common symptoms include hirsutism, hyperandrogenism, ovulatory dysfunction, irregular menstruation, and infertility. No one knows what causes it or how to stop it yet. Alterations in gut microbiota composition and disruptions in secondary bile acid production appear to play a causative role in developing PCOS. PCOS pathophysiology and phenotypes are tightly related to both enteric and vaginal bacteria. Patients with PCOS exhibit changed microbiome compositions and decreased microbial diversity. Intestinal microorganisms also alter PCOS patient phenotypes by upregulating or downregulating hormone release, gut-brain mediators, and metabolite synthesis. The human body's gut microbiota, also known as the "second genome," can interact with the environment to improve metabolic and immunological function. Inflammation is connected to PCOS and may be caused by dysbiosis in the gut microbiome. This review sheds light on the recently discovered connections between gut microbiota and insulin resistance (IR) and the potential mechanisms of PCOS. This study also describes metabolomic studies to obtain a clear view of PCOS and ways to tackle it.

17.
Front Genet ; 14: 1292009, 2023.
Article in English | MEDLINE | ID: mdl-38327700

ABSTRACT

Introduction: Chickpea is a legume crop that thrives in regions with semi-arid or temperate climates. Its seeds are an excellent source of proteins, carbohydrates, and minerals, especially high-quality proteins. Chickpea cultivation faces several challenges including Fusarium wilt (FW), a major fungal disease that significantly reduces productivity. Methods: In this study, a Genome-wide Association Analysis (GWAS) was conducted to identify multiple genomic loci associated with FW resistance in chickpea. We conducted a comprehensive evaluation of 180 chickpea genotypes for FW resistance across three distinct locations (Ethiopia, Tunisia, and Lebanon) during the 2-year span from 2015 to 2016. Disease infection measurements were recorded, and the wilt incidence of each genotype was calculated. We employed a set of 11,979 single nucleotide polymorphisms (SNPs) markers distributed across the entire chickpea genome for SNP genotyping. Population structure analysis was conducted to determine the genetic structure of the genotypes. Results and Discussion: The population structure unveiled that the analyzed chickpea germplasm could be categorized into four sub-populations. Notably, these sub-populations displayed diverse geographic origins. The GWAS identified 11 SNPs associated with FW resistance, dispersed across the genome. Certain SNPs were consistent across trials, while others were specific to particular environments. Chromosome CA2 harbored five SNP markers, CA5 featured two, and CA4, CA6, CA7, and CA8 each had one representative marker. Four SNPs demonstrated an association with FW resistance, consistently observed across a minimum of three distinct environments. These SNPs included SNP5826041, SNP5825086, SNP11063413, SNP5825195, which located in CaFeSOD, CaS13like, CaNTAQ1, and CaAARS genes, respectively. Further investigations were conducted to gain insights into the functions of these genes and their role in FW resistance. This progress holds promise for reducing the negative impact of the disease on chickpea production.

18.
Front Plant Sci ; 14: 1219055, 2023.
Article in English | MEDLINE | ID: mdl-38162302

ABSTRACT

Next-generation sequencing technologies have opened new avenues for using genomic data to study and develop molecular markers and improve genetic resources. Simple Sequence Repeats (SSRs) as genetic markers are increasingly used in molecular diversity and molecular breeding programs that require bioinformatics pipelines to analyze the large amounts of data. Therefore, there is an ongoing need for online tools that provide computational resources with minimal effort and maximum efficiency, including automated development of SSR markers. These tools should be flexible, customizable, and able to handle the ever-increasing amount of genomic data. Here we introduce MegaSSR (https://bioinformatics.um6p.ma/MegaSSR), a web server and a standalone pipeline that enables the design of SSR markers in any target genome. MegaSSR allows users to design targeted PCR-based primers for their selected SSR repeats and includes multiple tools that initiate computational pipelines for SSR mining, classification, comparisons, PCR primer design, in silico PCR validation, and statistical visualization. MegaSSR results can be accessed, searched, downloaded, and visualized with user-friendly web-based tools. These tools provide graphs and tables showing various aspects of SSR markers and corresponding PCR primers. MegaSSR will accelerate ongoing research in plant species and assist breeding programs in their efforts to improve current genomic resources.

19.
Article in English | MEDLINE | ID: mdl-36360783

ABSTRACT

The molecular basis of diabetes mellitus is yet to be fully elucidated. We aimed to identify the most frequently reported and differential expressed genes (DEGs) in diabetes by using bioinformatics approaches. Text mining was used to screen 40,225 article abstracts from diabetes literature. These studies highlighted 5939 diabetes-related genes spread across 22 human chromosomes, with 112 genes mentioned in more than 50 studies. Among these genes, HNF4A, PPARA, VEGFA, TCF7L2, HLA-DRB1, PPARG, NOS3, KCNJ11, PRKAA2, and HNF1A were mentioned in more than 200 articles. These genes are correlated with the regulation of glycogen and polysaccharide, adipogenesis, AGE/RAGE, and macrophage differentiation. Three datasets (44 patients and 57 controls) were subjected to gene expression analysis. The analysis revealed 135 significant DEGs, of which CEACAM6, ENPP4, HDAC5, HPCAL1, PARVG, STYXL1, VPS28, ZBTB33, ZFP37 and CCDC58 were the top 10 DEGs. These genes were enriched in aerobic respiration, T-cell antigen receptor pathway, tricarboxylic acid metabolic process, vitamin D receptor pathway, toll-like receptor signaling, and endoplasmic reticulum (ER) unfolded protein response. The results of text mining and gene expression analyses used as attribute values for machine learning (ML) analysis. The decision tree, extra-tree regressor and random forest algorithms were used in ML analysis to identify unique markers that could be used as diabetes diagnosis tools. These algorithms produced prediction models with accuracy ranges from 0.6364 to 0.88 and overall confidence interval (CI) of 95%. There were 39 biomarkers that could distinguish diabetic and non-diabetic patients, 12 of which were repeated multiple times. The majority of these genes are associated with stress response, signalling regulation, locomotion, cell motility, growth, and muscle adaptation. Machine learning algorithms highlighted the use of the HLA-DQB1 gene as a biomarker for diabetes early detection. Our data mining and gene expression analysis have provided useful information about potential biomarkers in diabetes.


Subject(s)
Data Mining , Diabetes Mellitus , Humans , Computational Biology/methods , Biomarkers , Machine Learning , Diabetes Mellitus/genetics , Gene Expression , Gene Expression Profiling/methods
20.
Front Genet ; 13: 898522, 2022.
Article in English | MEDLINE | ID: mdl-36263427

ABSTRACT

Heat stress caused by climatic changes is one of the most significant stresses on livestock in hot and dry areas. It has particularly adverse effects on the ability of the breed to maintain homeothermy. Developing countries are advised to protect and prepare their animal resources in the face of potential threats such as climate change. The current study was conducted in Egypt's three hot and dry agro-ecological zones. Three local sheep breeds (Saidi, Wahati, and Barki) were studied with a total of 206 ewes. The animals were exercised under natural heat stress. The heat tolerance index of the animals was calculated to identify animals with high and low heat tolerance based on their response to meteorological and physiological parameters. Genomic variation in these breeds was assessed using 64,756 single nucleotide polymorphic markers (SNPs). From the perspective of comparative adaptability to harsh conditions, our objective was to investigate the genomic structure that might control the adaptability of local sheep breeds to environmental stress under hot and dry conditions. In addition, indices of population structure and diversity of local breeds were examined. Measures of genetic diversity showed a significant influence of breed and location on populations. The standardized index of association (rbarD) ranged from 0.0012 (Dakhla) to 0.026 (Assuit), while for the breed, they ranged from 0.004 (Wahati) to 0.0103 (Saidi). The index of association analysis (Ia) ranged from 1.42 (Dakhla) to 35.88 (Assuit) by location and from 6.58 (Wahati) to 15.36 (Saidi) by breed. The most significant SNPs associated with heat tolerance were found in the MYO5A, PRKG1, GSTCD, and RTN1 genes (p ≤ 0.0001). MYO5A produces a protein widely distributed in the melanin-producing neural crest of the skin. Genetic association between genetic and phenotypic variations showed that OAR1_18300122.1, located in ST3GAL3, had the greatest positive effect on heat tolerance. Genome-wide association analysis identified SNPs associated with heat tolerance in the PLCB1, STEAP3, KSR2, UNC13C, PEBP4, and GPAT2 genes.

SELECTION OF CITATIONS
SEARCH DETAIL