Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 13(4)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38666894

ABSTRACT

Human coronaviruses (HCoVs) are seriously associated with respiratory diseases in humans and animals. The first human pathogenic SARS-CoV emerged in 2002-2003. The second was MERS-CoV, reported from Jeddah, the Kingdom of Saudi Arabia, in 2012, and the third one was SARS-CoV-2, identified from Wuhan City, China, in late December 2019. The HCoV-Spike (S) gene has the highest mutation/insertion/deletion rate and has been the most utilized target for vaccine/antiviral development. In this manuscript, we discuss the genetic diversity, phylogenetic relationships, and recombination patterns of selected HCoVs with emphasis on the S protein gene of MERS-CoV and SARS-CoV-2 to elucidate the possible emergence of new variants/strains of coronavirus in the near future. The findings showed that MERS-CoV and SARS-CoV-2 have significant sequence identity with the selected HCoVs. The phylogenetic tree analysis formed a separate cluster for each HCoV. The recombination pattern analysis showed that the HCoV-NL63-Japan was a probable recombinant. The HCoV-NL63-USA was identified as a major parent while the HCoV-NL63-Netherland was identified as a minor parent. The recombination breakpoints start in the viral genome at the 142 nucleotide position and end at the 1082 nucleotide position with a 99% CI and Bonferroni-corrected p-value of 0.05. The findings of this study provide insightful information about HCoV-S gene diversity, recombination, and evolutionary patterns. Based on these data, it can be concluded that the possible emergence of new strains/variants of HCoV is imminent.

2.
Diagnostics (Basel) ; 13(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36611443

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is caused by a well-known coronavirus first identified in a hospitalized patient in the Kingdom of Saudi Arabia. MERS-CoV is a serious pathogen affecting both human and camel health globally, with camels being known carriers of viruses that spread to humans. In this work, MERS-CoV genomic sequences were retrieved and analyzed by multiple sequence alignment to design and predict siRNAs with online software. The siRNAs were designed from the orf1ab region of the virus genome because of its high sequence conservation and vital role in virus replication. The designed siRNAs were used for experimental evaluation in selected cell lines: Vero cells, HEK-293-T, and Huh-7. Virus inhibition was assessed according to the cycle threshold value during a quantitative real-time polymerase chain reaction. Out of 462 potential siRNAs, we filtered out 21 based on specific selection criteria without off-target effect. The selected siRNAs did not show any cellular toxicity in the tested cell lines at various concentrations. Based on our results, it was obvious that the combined use of siRNAs exhibited a reduction in MERS-CoV replication in the Vero, HEK-293-T, and Huh-7 cell lines, with the highest efficacy displayed in the Vero cells.

3.
J King Saud Univ Sci ; 35(3): 102540, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36624781

ABSTRACT

Background: A new coronavirus was identified in Jeddah, Saudi Arabia in 2012 and designated as Middle East Respiratory Syndrome Coronavirus (MERS-CoV). To date, this virus has been reported in 27 countries. The virus transmission to humans has already been reported from camels. Currently, there is no vaccine or antiviral therapy available against this virus. Methods: The siRNAs were in silico predicted, designed, and chemically synthesized by using the MERS-CoV-orf1ab region as a target. The antiviral activity was experimentally evaluated by delivering the siRNAs with Lipofectamine™ 2000 and JetPRIMER as transfection reagents in both Vero cell and HEK-293-T cell lines at two different concentrations (10.0 nM and 5.0 nM). The Ct value of quantitative Real-Time PCR (qRT-PCR) was used to calculate and determine the reduction of viral RNA level in both cell supernatant and cell lysate isolated from both cell lines. Results: The sequence alignment resulted in the selection of highly conserved regions. The orf1ab region was used to predict and design the siRNAs and a total of twenty-one siRNAs were finally selected from four hundred and twenty-six siRNAs generated by online software. Inhibition of viral replication and significant reduction of viral RNA was observed against selected siRNAs in both cell lines at both concentrations. Based on the Ct value, the siRNAs # 11, 12, 18, and 20 were observed to be the best performing in both cell lines at both concentrations. Conclusion: Based on the results and data analysis, it is concluded that the use of two different transfection reagents was significantly effective. But the Lipofectamine™ 2000 was found to be a better transfection reagent than the JetPRIMER for the delivery of siRNAs in both cell lines.

4.
Molecules ; 26(9)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33947034

ABSTRACT

MERS-CoV was identified for the first time in Jeddah, Saudi Arabia in 2012 in a hospitalized patient. This virus subsequently spread to 27 countries with a total of 939 deaths and 2586 confirmed cases and now has become a serious concern globally. Camels are well known for the transmission of the virus to the human population. In this report, we have discussed the prediction, designing, and evaluation of potential siRNA targeting the ORF1ab gene for the inhibition of MERS-CoV replication. The online software, siDirect 2.0 was used to predict and design the siRNAs, their secondary structure and their target accessibility. ORF1ab gene folding was performed by RNAxs and RNAfold software. A total of twenty-one siRNAs were selected from 462 siRNAs according to their scoring and specificity. siRNAs were evaluated in vitro for their cytotoxicity and antiviral efficacy in Huh7 cell line. No significant cytotoxicity was observed for all siRNAs in Huh7 cells. The in vitro study showed the inhibition of viral replication by three siRNAs. The data generated in this study provide preliminary and encouraging information to evaluate the siRNAs separately as well as in combination against MERS-CoV replication in other cell lines. The prediction of siRNAs using online software resulted in the filtration and selection of potential siRNAs with high accuracy and strength. This computational approach resulted in three effective siRNAs that can be taken further to in vivo animal studies and can be used to develop safe and effective antiviral therapies for other prevalent disease-causing viruses.


Subject(s)
Coronavirus Infections/therapy , Middle East Respiratory Syndrome Coronavirus/physiology , RNA, Small Interfering/pharmacology , RNAi Therapeutics , Virus Replication , Cell Line , Coronavirus Infections/virology , Humans , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/genetics , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Viral Proteins/genetics , Virus Replication/drug effects
5.
Saudi J Biol Sci ; 28(2): 1348-1355, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33519276

ABSTRACT

The Middle East Respiratory Syndrome Coronavirus is well known to cause respiratory syndrome and this virus was identified and isolated for the first time from Jeddah, Saudi Arabia in 2012 from infected patient. In this report, we have conducted the in-silico prediction, designing and evaluation of siRNAs targeting Middle East Respiratory Syndrome Coronavirus orf1ab gene to inhibit the virus replication. By using bioinformatics software, total twenty-one functional, off-target reduced siRNA were selected from four hundred and sixty-two siRNAs based on their greater potency and specificity. We have evaluated only seven siRNAs to analyze their performance and efficacy as antivirals by reverse transfection approach in Vero cells. There was no cytotoxicity of siRNAs at various concentrations was observed in Vero cells. Based on the real-time PCR results, better inhibition of viral replication was observed in the siRNA-1 and 4 as compared to other siRNAs. The results generated from this work provided suitable information about the efficacy of siRNAs which encouraged us to further evaluate the remaining siRNAs to determine their inhibitory effect on the virus replication. We concluded that the insilico prediction and designing resulted in the screening of potential siRNAs with better efficiency, and strength. This can be used to develop oligonucleotide-based antiviral therapeutics against MERS-CoV in the near future.

6.
J Infect Public Health ; 14(2): 238-243, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33493920

ABSTRACT

BACKGROUND: The MERS-CoV was identified for the first time from Jeddah, Saudi Arabia in 2012 from a hospitalized patient. This virus has now been spread to 27 countries with a total of 858 deaths and 2494 confirmed cases and has become a serious concern for the human population. Camels are well known for the transmission of the virus to the human population. METHODS: In this report, we have discussed the designing, prediction, and evaluation of potential siRNAs against the orf1ab gene of MERS-CoV. The online software was used to predict and design the siRNAs and finally, total twenty-one siRNA were filtered out from four hundred and sixty-two sIRNAs as per their scoring and specificity criteria. We have used only ten siRNAs to evaluate their cytotoxicity and efficacy by reverse transfection approach in HEK-293-T cell lines. RESULTS: Based on the results and data generated; no cytotoxicity was observed for any siRNAs at various concentrations in HEK-293-T cells. The ct value of real-time PCR showed the inhibition of viral replication in siRNA-1, 2, 4, 6, and 9. The data generated provided the preliminary information and encouraged us to evaluate the remaining siRNAs separately as well as in combination to analyses the replication of MERS-CoV inhibition in other cell lines. CONCLUSION: Based on the results obtained; it is concluded that the prediction of siRNAs using online software resulted in the filtration of potential siRNAs with high accuracy and strength. This technology can be used to design and develop antiviral therapy not only for MERS-CoV but also against other viruses.


Subject(s)
Genes, Viral , Middle East Respiratory Syndrome Coronavirus/genetics , RNA, Small Interfering/genetics , Animals , Camelus , Coronavirus Infections , HEK293 Cells , Humans , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...