Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Future Sci OA ; 10(1): FSO918, 2024.
Article in English | MEDLINE | ID: mdl-38817387

ABSTRACT

Aim: siRNA can silence targeted genes with lesser toxicity than therapeutic drugs. Therefore, this study aims to investigate new approaches to treat pancreatic cancer (PC) using combinations of siRNA and gemcitabine. Methods: Three genes, ANGTPL4, Notch1 and NF-κß1, were silenced using siRNA, and their anti-proliferative effects were studied in combination with gemcitabine on pancreatic cancer cell line (PANC-1) using MTT viability assay. Results: Our results showed a significant reduction in PANC-1 cells growth upon treating cells with gemcitabine and single and combinations of siRNA sequences specific for ANGTPL4, Notch1 and NF-κß1 genes. Conclusion: Co-transfection of gemcitabine-treated PANC-1 cells with ANGPTL4, Notch1 and NF-κßsiRNAs enhances the chemosensitivity of PANC-1 cells to gemcitabine can be a promising therapeutic approach.


Pancreatic cancer (PC) is prominent with its aggressive behavior and metastatic properties, making it one of the leading causes of cancer-related deaths worldwide. PC is associated with poor prognosis and low survival rate, with 5 years survival rate of less than 9%. Moreover, only 20% of PC patients could undergo surgery, which makes investigating new therapeutic approaches to treat PC necessary. In the current study, the chemosensitivity of pancreatic cancer cells to gemcitabine has been enhanced using a single and combination of ANGTPL4, Notch1 and NF-κß1 siRNA.

2.
Heliyon ; 10(10): e30743, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38774322

ABSTRACT

Anti-nucleolin (NCL) aptamer AS1411 is the first anticancer aptamer tested in clinical trials. Gold nanoparticles (AuNP) have been widely exploited for various biomedical applications due to their unique functional properties. In this study, we evaluated the colloidal stability and targeting capacity of AS1411-funtionalized AuNP (AuNP/NCL-Apt) against MCF-7 breast cancer cell line before and after lyophilization. Trehalose, mannitol, and sucrose at various concentrations were evaluated to determine their cryoprotection effects. Our results indicate that sucrose at 10 % (w/v) exhibits the best cryoprotection effect and minimal AuNP/NCL-Apt aggregation as confirmed by UV-Vis spectroscopy and dynamic light scattering (DLS) measurements. Moreover, the lyophilized AuNP/NCL-Apt at optimized formulation maintained its targeting and cytotoxic functionality against MCF-7 cells as proven by the cellular uptake assays utilizing flow cytometry and confocal laser scanning microscopy (CLSM). Quantitative PCR (qPCR) analysis of nucleolin-target gene expression also confirmed the effectiveness of AuNP/NCL-Apt. This study highlights the importance of selecting the proper type and concentration of cryoprotectant in the typical nanoparticle lyophilization process and contributes to our understanding of the physical and biological properties of functionalized nanoparticles upon lyophilization.

3.
Biomed Chromatogr ; : e5899, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38797863

ABSTRACT

Nanoliposomes (NLs) are ideal carriers for delivering complex molecules and phytochemical products, but ginger by-products, despite their therapeutic benefits, have poor bioavailability due to their low water solubility and stability. Crude ginger extracts (CGEs) and 6-gingerol were individually encapsulated within NLs for in vitro activity assessment. In vitro evaluation of anti-proliferative and anti-inflammatory properties of encapsulated 6-gingerol and CGE was performed on healthy human periodontal ligament (PDL) fibroblasts and MDA-MB-231 breast cancer cells. Encapsulation efficiency and loading capacity of 6-gingerol reached 25.23% and 2.5%, respectively. NLs were found stable for up to 30 days at 4°C with a gradual load loss of up to 20%. In vitro cytotoxic effect of encapsulated 6-gingerol exceeded 70% in the MDA-MB-231 cell line, in a comparable manner with non-encapsulated 6-gingerol and CGE. The effect of CGE with an IC50 of 3.11 ± 0.39, 7.14 ± 0.80, and 0.82 ± 0.55 µM and encapsulated 6-gingerol on inhibiting IL-8 was evident, indicating its potential anti-inflammatory activity. Encapsulating 6-gingerol within NLs enhanced its stability and facilitated its biological activity. All compounds, including vitamin C, were equivalent at concentrations below 2 mg/mL, with a slight difference in antioxidant activity. The concentrations capable of inhibiting 50% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) substrate were comparable.

4.
Expert Opin Drug Deliv ; 21(3): 399-422, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38623735

ABSTRACT

INTRODUCTION: Doxorubicin (DOX) emerges as a cornerstone in the arsenal of potent chemotherapeutic agents. Yet, the clinical deployment of DOX is tarnished by its proclivity to induce severe cardiotoxic effects, culminating in heart failure and other consequential morbidities. In response, a panoply of strategies has undergone rigorous exploration over recent decades, all aimed at attenuating DOX's cardiotoxic impact. The advent of encapsulating DOX within lipidic or polymeric nanocarriers has yielded a dual triumph, augmenting DOX's therapeutic efficacy while mitigating its deleterious side effects. AREAS COVERED: Recent strides have spotlighted the emergence of DOX conjugates as particularly auspicious avenues for ameliorating DOX-induced cardiotoxicity. These conjugates entail the fusion of DOX through physical or chemical bonds with diminutive natural or synthetic moieties, polymers, biomolecules, and nanoparticles. This spectrum encompasses interventions that impinge upon DOX's cardiotoxic mechanism, modulate cellular uptake and localization, confer antioxidative properties, or refine cellular targeting. EXPERT OPINION: The endorsement of DOX conjugates as a compelling stratagem to mitigate DOX-induced cardiotoxicity resounds from this exegesis, amplifying safety margins and the therapeutic profile of this venerated chemotherapeutic agent. Within this ambit, DOX conjugates stand as a beacon of promise in the perpetual pursuit of refining chemotherapy-induced cardiac compromise.


Subject(s)
Antibiotics, Antineoplastic , Cardiotoxicity , Doxorubicin , Drug Carriers , Nanoparticles , Doxorubicin/adverse effects , Doxorubicin/administration & dosage , Cardiotoxicity/prevention & control , Cardiotoxicity/etiology , Humans , Animals , Antibiotics, Antineoplastic/adverse effects , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/chemistry , Drug Carriers/chemistry , Nanoparticles/chemistry , Drug Delivery Systems , Polymers/chemistry , Heart Failure/drug therapy , Heart Failure/chemically induced , Lipids/chemistry
5.
Bioanalysis ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38497721

ABSTRACT

This study was conducted to compare dissolution profiles of four Jordanian registered sildenafil (SDF) products to the originator. Dissolution samples were analyzed utilizing a validated and stability-indicating HPLC method in human plasma. Validation was performed for specificity, linearity, limit of detection, lower limit of quantification, precision, trueness and stability. SDF was extracted from plasma samples using liquid-liquid extraction. The analysis was performed utilizing isocratic elution on C18 column with 1.0 ml/min flow rate. The regression value was ∼0.999 over 3 days with drug recovery between 86.6 to 89.8%with 10 ng/ml lower limit of quantitation. This method displayed a good selectivity of SDF with improved stability under various conditions. The method was used for SDF quantification in dissolution medium. Similarity factors for local products varied according to the used mediums, but all SDF local products passed the dissolution in vitro test since all of them showed a released of >85% after 60 min at the dissolution mediums.

6.
Pharm Dev Technol ; 29(4): 322-338, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38502578

ABSTRACT

AIMS: Micellar systems have the advantage of being easily prepared, cheap, and readily loadable with bioactive molecular cargo. However, their fundamental pitfall is poor stability, particularly under dilution conditions. We propose to use simple quaternary ammonium surfactants, namely, hexadecylamine (HDA) and hexadecylpyridinium (HDAP), together with tripolyphosphate (TPP) anion, to generate ionotropically stabilized micelles capable of drug delivery into cancer cells. METHODS: optimized mixed HDA/HDAP micelles were prepared and stabilized with TPP. Curcumin was used as a loaded model drug. The prepared nanoparticles were characterized by dynamic light scattering, infrared spectroscopy, transmission electron microscopy, and differential scanning calorimetry. Moreover, their cellular uptake was assessed using flow cytometry and confocal fluorescence microscopy. RESULTS: The prepared nanoparticles were found to be stable under dilution and at high temperatures and to have a size range from 139 nm to 580 nm, depending on pH (4.6-7.4), dilution (up to 100 times), and temperature (25 - 80 °C). They were effective at delivering their load into cancer cells. Additionally, flow cytometry indicated the resulting stabilized micellar nanoparticles to be non-cytotoxic. CONCLUSIONS: The described novel stabilized micelles are simple to prepare and viable for cancer delivery.


Subject(s)
Amines , Curcumin , Drug Delivery Systems , Micelles , Nanoparticles , Polyphosphates , Humans , Amines/chemistry , Polyphosphates/chemistry , Nanoparticles/chemistry , Drug Delivery Systems/methods , Curcumin/administration & dosage , Curcumin/chemistry , Curcumin/pharmacology , Curcumin/pharmacokinetics , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Drug Carriers/chemistry , Surface-Active Agents/chemistry , Surface-Active Agents/chemical synthesis , Particle Size , Cell Line, Tumor , Neoplasms/drug therapy
7.
RSC Adv ; 14(5): 3070-3084, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38239437

ABSTRACT

A dual stimuli-responsive nanocarrier was developed from smart biocompatible chitosan and soluplus graft copolymers. The copolymerization was investigated by differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA), and Fourier transform infrared (FTIR). The optimized chitosan-soluplus nanoparticles (CS-SP NPs) were further used for the encapsulation of a poorly water-soluble anticancer drug. Tamoxifen citrate (TC) was used as the model drug and it was loaded in CS-SP NPs. TC CS-SP NPs were characterized in terms of particle size, zeta potential, polydispersity, morphology, encapsulation efficiency, and physical stability. The nanoparticles showed homogenous spherical features with a size around 94 nm, a slightly positive zeta potential, and an encapsulation efficiency around 96.66%. Dynamic light scattering (DLS), in vitro drug release, and cytotoxicity confirmed that the created nano-system is smart and exhibits pH and temperature-responsive behavior. In vitro cellular uptake was evaluated by flow cytometry and confocal microscopy. The nanoparticles revealed a triggered increase in size upon reaching the lower critical solution temperature of SP, with 70% of drug release at acidic pH and 40 °C within the first hour and a 3.5-fold increase in cytotoxicity against MCF7 cells incubated at 40 °C. The cellular uptake study manifested that the prepared nanoparticles succeeded in delivering drug molecules to MCF7 and MDA-MB-231 cells. In summary, the distinctive characteristics provided by these novel CS-SP NPs result in a promising nano-platform for effective drug delivery in cancer treatment.

8.
J Liposome Res ; 34(1): 178-202, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37378553

ABSTRACT

Liposomes are spherical lipidic nanocarriers composed of natural or synthetic phospholipids with a hydrophobic bilayer and aqueous core, which are arranged into a polar head and a long hydrophobic tail, forming an amphipathic nano/micro-particle. Despite numerous liposomal applications, their use encounters many challenges related to the physicochemical properties strongly affected by their constituents, colloidal stability, and interactions with the biological environment. This review aims to provide a perspective and a clear idea about the main factors that regulate the liposomes' colloidal and bilayer stability, emphasising the roles of cholesterol and its possible alternatives. Moreover, this review will analyse strategies that offer possible approaches to provide more stable in vitro and in vivo liposomes with enhanced drug release and encapsulation efficiencies.


Subject(s)
Liposomes , Phospholipids , Liposomes/chemistry , Phospholipids/chemistry , Cholesterol/chemistry , Drug Stability
9.
Chem Biodivers ; 21(2): e202301470, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38161147

ABSTRACT

Doxorubicin (DOX) is widely used against solid tumors. Niosomes are self-assembled nanocarriers of non-ionic surfactants. DOX loaded into cationic niosomes (DOX-Nio) was prepared via thin film hydration method. DOX-Nio was then decorated with a hyaluronic acid (DOX-HA-Nio) via electrostatic interaction. DOX-Nio and DOX-HA-Nio displayed a particle size of 120.0±1.02 and 182.9±2.3 nm, and charge of + 35.5±0.15 and -15.6±0.25 mV, respectively, with PDI < 0.3. DOX-HA-Nio showed a good stability regarding size and charge over 4 weeks at 4 °C and maintain their integrity after lyophilization. HPLC results showed a 94.1±4.2 % encapsulation efficiency of DOX with good entrapment and slow, prolonged DOX release even after 48 hrs. Cell viability assay showed an IC50 of 14.26 nM for the DOX-HA-Nio against MCF-7 cell line with micromolar IC50 results against CD-44 negative cell lines (NIH/3T3). DOX-HA-Nio was proven to be an effective, targeted nanocarrier for DOX against MCF-7 cell line.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Liposomes , Hyaluronic Acid , Doxorubicin/pharmacology , MCF-7 Cells
10.
Bioanalysis ; 15(23): 1439-1460, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37847048

ABSTRACT

Accurate detection and monitoring of therapeutic drug levels are vital for effective patient care and treatment management. Aptamers, composed of single-stranded DNA or RNA molecules, are integral components of biosensors designed for both qualitative and quantitative detection of biological samples. Aptasensors play crucial roles in target identification, validation, detection of drug-target interactions and screening potential of drug candidates. This review focuses on the pivotal role of aptasensors in early disease detection, particularly in identifying biomarkers associated with various diseases such as cancer, infectious diseases and cardiovascular disorders. Aptasensors have demonstrated exceptional potential in enhancing disease diagnostics and monitoring therapeutic drug levels. Aptamer-based biosensors represent a transformative technology in the field of healthcare, enabling precise diagnostics, drug monitoring and disease detection.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Neoplasms , Humans , Molecular Probes , Drug Monitoring , Biomarkers
11.
Bioanalysis ; 15(23): 1393-1405, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37847056

ABSTRACT

This study aims to develop and validate an HPLC technique for the determination of fulvestrant and disulfiram in liposomes. Encapsulation of both drugs into liposomes may improve their anticancer potential. Validation was performed following the International Conference on Harmonization guidelines for specificity, linearity, limit of detection, limit of quantification, precision, accuracy and robustness. Method specificity displayed no interference and linearity over 25-200 and 12.5-100 µg/ml for fulvestrant and disulfiram, respectively. Precision and accuracy exhibited a low relative standard deviation (<1.70%) and appropriate recovery. The validated method could be designated as a proper method for the simultaneous determination of fulvestrant and disulfiram in liposomes. The liposomes displayed 148.5 ± 5.1 nm size. The encapsulation efficiencies were 73.52 and 50.50% for fulvestrant and disulfiram, respectively.


Subject(s)
Disulfiram , Liposomes , Limit of Detection , Fulvestrant , Chromatography, High Pressure Liquid/methods
12.
Chem Biodivers ; 20(11): e202301167, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37781742

ABSTRACT

The abstract discusses the development of rutin-loaded nanoliposomes and their anti-colorectal cancer activity against human carcinoma cells (HT-29). The study characterizes the nanoliposomes using the thin-film hydration method and analyzes their size, charge, and polydispersity index. The encapsulation efficiency and drug loading ability of rutin at different concentrations were investigated. The nanoliposomes were found to be stable for up to one month at 4 °C and showed sustained drug release for up to 24 h. The anti-cancer activity of the rutin-loaded nanoliposomes was found to be concentration-dependent and significantly improved compared to free rutin. PEGylated nanoliposomes with rutin (1.8 mg/ml) showed the highest encapsulation efficiency and drug loading ability, along with improved selectivity against cancer cells. Overall, the study provides important insights into the potential use of rutin-loaded nanoliposomes for the treatment of colorectal cancer.


Subject(s)
Carcinoma , Rutin , Humans , Rutin/pharmacology , Liposomes , HT29 Cells , Polyethylene Glycols
13.
Biomedicines ; 11(9)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37760931

ABSTRACT

Gold nanoparticles (AuNPs) are one of the most stable nanoparticles that have been prevalently used as examples for biological and biomedical applications. Herein, we evaluate the effect of AuNPs on the biological processes of dental pulp stem cells derived from exfoliated deciduous teeth (SHED). Two different shapes of PEGylated AuNPs, rods (AuNR-PEG) and spheres (AuNS-PEG), were prepared and characterized. SHED cells were treated with different concentrations of AuNR-PEG and AuNS-PEG to determine their effect on the stemness profile of stem cells (SCs), proliferation, cytotoxicity, cellular uptake, and reactive oxygen species (ROS), for cells cultured in media containing-fetal bovine serum (FBS) and serum-free media (SFM). Our results showed that both nanoparticle shapes maintained the expression profile of MSC surface markers. Moreover, AuNS-PEG showed a stimulatory effect on the proliferation rate and lower toxicity on SHED, compared to AuNR-PEG. Higher concentrations of 0.5-0.125 nM of AuNR-PEG have been demonstrated to cause more toxicity in cells. Additionally, cells treated with AuNPs and cultured in FBS showed a higher proliferative rate and lower toxicity when compared to the SFM. For cellular uptake, both AuNS-PEG and AuNR-PEG were uptaken by treated cells efficiently. However, cells cultured in SFM media showed a higher percentage of cellular uptake. For ROS, AuNR-PEG showed a significant reduction in ROS at lower concentrations (<0.03 nM), while AuNS-PEG did not show any significant difference compared to the control untreated cells. Thus, our results give evidence about the optimum concentration and shape of AuNPs that can be used for the differentiation of stem cells into specific cell lineages in tissue engineering and regenerative medicine.

14.
PLoS One ; 18(9): e0291981, 2023.
Article in English | MEDLINE | ID: mdl-37768997

ABSTRACT

Disulfiram and hydralazine have recently been reported to have anti-cancer action, and repositioned to be used as adjuvant in cancer therapy. Chemotherapy combined with other medications, such as those that affect the immune system or epigenetic cell profile, can overcome resistance with fewer adverse effects compared to chemotherapy alone. In the present study, a combination of doxorubicin (DOX) with hydrazine (Hyd) and disulfiram (Dis), as a triple treatment, was evaluated against wild-type and DOX-resistant MCF-7 breast cancer cell line. Both wild-type MCF-7 cell line (MCF-7_WT) and DOX-resistant MCF-7 cell line (MCF-7_DoxR) were treated with different combination ratios of DOX, Dis, and Hyd followed by measuring the cell viability using the MTT assay. Synergism was determined using a combination index, isobologram analysis, and dose-reducing index. The anti-proliferation activity and mechanism of the triple combination were investigated by apoptosis analysis. The results showed a reduction in the IC50 values of DOX in MCF-7_WT cells (from 0.24 µM to 0.012 µM) and MCF-7_DoxR cells (from 1.13 µM to 0.44 µM) when treated with Dis (0.03µM), and Hyd (20µM) combination. Moreover, The triple combination DOX/Hyd/Dis induced significant apoptosis in both MCF-7_WT and MCF-7_DoxR cells compared to DOX alone. The triple combination of DOX, Dis, and Hyd showed a synergistic drugs combination to decrease the DOX dose needed to kill both MCF-7_WT and MCF-7_DoxR cancer cells and enhanced chemosensitivity to DOX.

17.
Heliyon ; 9(6): e17267, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37408902

ABSTRACT

Cancer is considered one of the top global causes of death. Natural products have been used in oncology medicine either in crude form or by utilizing isolated secondary metabolites. Biologically active phytomolecules such as gallic acid and quercetin have confirmed antioxidant, anti-bacterial, and neoplastic properties. There is an agreement that microorganisms could mediate oncogenesis or alter the immune system. This research project aims to develop a novel formulation of co-loaded gallic acid and quercetin into nanoliposomes and investigate the efficacy of the free and combined agents against multiple cancerous cell lines and bacterial strains. Thin-film hydration technique was adopted to synthesize the nanocarriers. Particle characteristics were measured using a Zetasizer. The morphology of nanoliposomes was examined by scanning electron microscopy, Encapsulation efficiency and drug loading were evaluated using High-Performance Liquid Chromatography. Cytotoxicity was determined against Breast Cancer Cells MCF-7, Human Carcinoma Cells HT-29, and A549 Lung Cancer Cells. The antibacterial activities were evaluated against Acinetobacter baumannii, Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, and Staphylococcus aureus. Therapeutic formulas were categorized into groups: free gallic acid, free quercetin, free-mix, and their nano-counterparts. Findings revealed that drug loading capacity was 0.204 for the mix formula compared to 0.092 and 0.68 for free gallic acid and quercetin, respectively. Regarding the Zeta potential, the mix formula showed more amphiphilic charge than the free quercetin and free gallic acid formulas (P-values 0.003 and 0.002 receptively). On the contrary, no significant difference in polydispersity indices was reported. Lung cancerous cells were the most affected by the treatments. The best estimated IC50 values were observed in breast and lung cancer lines for the nano-gallic acid and co-loaded particles. The nano-quercetin formula exhibited the least cytotoxicity with an IC50 value of ≥200 µg/mL in both breast (MCF-7) and colorectal adenocarcinoma cell lines (HT-29) with no activity against the lung. A remarkable improvement in the efficacy of quercetin was measured after mixing it with gallic acid against the breast and lungs. The tested therapeutic agents exhibited antimicrobial activity against gram-positive bacteria. Nano-liposomes can either enhance or reduce the cytotoxicity activity of active compounds depending on the physical and chemical properties of drug-loaded and type of cancer cells.

18.
Chem Biodivers ; 20(8): e202300534, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37498138

ABSTRACT

Olive leaf extract is a valuable source of phenolic compounds; primarily, oleuropein (major component) and rutin. This natural olive leaf extract has potential use as a therapeutic agent for cancer treatment. However, its clinical application is hindered by poor pharmacokinetics and low stability. To overcome these limitations, this study aimed to enhance the anticancer activity and stability of oleuropein and rutin by loading them into PEGylated Nano-phytosomes. The developed PEGylated Nano-phytosomes exhibited favorable characteristics in terms of size, charge, and stability. Notably, the anticolonic cancer activity of the Pegylated Nano-phytosomes loaded with oleuropein (IC50=0.14 µM) and rutin (IC50=0.44 µM) surpassed that of pure oleuropein and rutin alone. This outcome highlights the advantageous impact of Nano-phytosomes to augment the anticancer potential of oleuropein and rutin. These results present a promising pathway for the future development of oleuropein and rutin Nano-phytosomes as effective options for passive tumor-targeted therapy, given their improved stability and efficacy.


Subject(s)
Neoplasms , Olea , Rutin/pharmacology , Antioxidants , Iridoids/pharmacology , Iridoid Glucosides , Polyethylene Glycols , Plant Leaves , Plant Extracts/pharmacology
19.
Life Sci ; 329: 121964, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37473800

ABSTRACT

PURPOSE: Existing prognostic biomarkers are inadequate for stratifying breast cancer patients with the highest risk of tumor progression at the time of diagnosis. Here, we demonstrate that the small GTPase Ran has predictive value for breast cancer (BC) patients as a whole, and for specific BC subtypes. PATIENTS AND METHODS: Ran expression was quantified by immunohistochemistry in 263 patients with primary breast cancer diagnosed at the Breast Unit, Royal Liverpool Hospital. Additionally as an independent validation, we also analyzed the mRNA expressions of Ran, ER, PR, and Cerb-2, the triple-negative endocrine receptors, and their associations with patient survival in a combined patient cohorts of multiple public datasets (n = 1079). We analyzed the data with Spearman's rank correlation and Kaplan-Meier plots coupled with Wilcoxon-Gehan tests, respectively. All statistical tests were two-sided. RESULTS: Ran nuclear, cytoplasmic, and total staining are substantially associated with poor survival, independent of conventional prognostic markers such as estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2), and lymph node status. According to the datasets, Ran was significantly correlated with distant metastasis-free survival (DMFS) and relapse-free survival (RFS). CONCLUSION: We found that Ran expression is a unique predictive biomarker for patient survival, metastasis, and tumor relapse. This biomarker could be used for diagnostic purposes, using formalin-fixed, paraffin-embedded tumor biopsy samples from breast cancer patients in the early stages.


Subject(s)
Breast Neoplasms , Female , Humans , Biomarkers, Tumor/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Disease-Free Survival , Neoplasm Recurrence, Local , Prognosis , Receptors, Progesterone/genetics
20.
Food Chem ; 424: 136438, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37244187

ABSTRACT

Nanotechnology is an advanced field that has remarkable nutraceutical and food applications. Phyto-bioactive compounds (PBCs) play critical roles in promoting health and disease treatment. However, PBCs generally encounter several limitations that delay their widespread application. For example, most PBCs have low aqueous solubility, poor biostability, poor bioavailability, and a lack of target specificity. Moreover, the high concentrations of effective PBC doses also limit their application. As a result, encapsulating PBCs into an appropriate nanocarrier may increase their solubility and biostability and protect them from premature degradation. Moreover, nanoencapsulation could improve absorption and prolong circulation with a high opportunity for targeted delivery that may decrease unwanted toxicity. This review addresses the main parameters, variables, and barriers that control and affect oral PBC delivery. Moreover, this review discusses the potential role of biocompatible and biodegradable nanocarriers in improving the water solubility, chemical stability, bioavailability, and specificity/selectivity of PBCs.


Subject(s)
Nanoparticles , Nanotechnology , Dietary Supplements , Solubility , Biological Availability , Nanoparticles/chemistry , Drug Delivery Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...