Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38761210

ABSTRACT

Since prostate cancer is one of the leading causes of cancer-related death, a better understanding of the molecular pathways guiding its development is imperative. A key factor in prostate cancer is autophagy, a cellular mechanism that affects both cell survival and death. Autophagy is essential in maintaining cellular homeostasis. Autophagy is a physiological mechanism wherein redundant or malfunctioning cellular constituents are broken down and recycled. It is essential for preserving cellular homeostasis and is implicated in several physiological and pathological conditions, including cancer. Autophagy has been linked to metastasis, tumor development, and treatment resistance in prostate cancer. The deregulation of miRNAs related to autophagy appears to be a crucial element in the etiology of prostate cancer. These miRNAs influence the destiny of cancer cells by finely regulating autophagic mechanisms. Numerous investigations have emphasized the dual function of specific miRNAs in prostate cancer, which alter autophagy-related pathways to function as either tumor suppressors or oncogenes. Notably, miRNAs have been linked to the control of autophagy and the proliferation, apoptosis, and migration of prostate cancer cells. To create customized therapy approaches, it is imperative to comprehend the dynamic interplay between autophagy and miRNAs in prostate cancer. The identification of key miRNAs provides potential diagnostic and prognostic markers. Unraveling the complex network of lncRNAs, like PCA3, also expands the repertoire of molecular targets for therapeutic interventions. This review explores the intricate interplay between autophagy and miRNAs in prostate cancer, focusing on their regulatory roles in cellular processes ranging from survival to programmed cell death.

2.
Pathol Res Pract ; 256: 155252, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479121

ABSTRACT

Necroptosis, a controlled type of cell death that is different from apoptosis, has become a key figure in the aetiology of cancer and offers a possible target for treatment. A growing number of biological activities, including necroptosis, have been linked to long noncoding RNAs (lncRNAs), a varied family of RNA molecules with limited capacity to code for proteins. The complex interactions between LncRNAs and important molecular effectors of necroptosis, including mixed lineage kinase domain-like pseudokinase (MLKL) and receptor-interacting protein kinase 3 (RIPK3), will be investigated. We will explore the many methods that LncRNAs use to affect necroptosis, including protein-protein interactions, transcriptional control, and post-transcriptional modification. Additionally, the deregulation of certain LncRNAs in different forms of cancer will be discussed, highlighting their dual function in influencing necroptotic processes as tumour suppressors and oncogenes. The goal of this study is to thoroughly examine the complex role that LncRNAs play in controlling necroptotic pathways and how that regulation affects the onset and spread of cancer. In the necroptosis for cancer treatment, this review will also provide insight into the possible therapeutic uses of targeting LncRNAs. Techniques utilising LncRNA-based medicines show promise in controlling necroptotic pathways to prevent cancer from spreading and improve the effectiveness of treatment.


Subject(s)
Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Necroptosis/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Apoptosis/genetics , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/metabolism
3.
Antibiotics (Basel) ; 12(7)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37508253

ABSTRACT

Broccoli, Brassica oleracea var. italica, has recently gained considerable attention due to its remarkable nutritional composition and numerous health benefits. In this review, the nutritional aspects of broccoli are examined, highlighting its rich nutrient content and essential bioactive compounds. The cruciferous vegetable broccoli is a rich source of several important nutrients, including fiber, vitamins (A, C, and K), minerals (calcium, potassium, and iron), and antioxidants. It has also been shown to contain bioactive compounds such as glucosinolates, sulforaphane, and indole-3-carbinol, all of which have been shown to have significant health-promoting effects. These chemicals are known to have potent antioxidant, anti-inflammatory, and anticancer effects. This review article aims to comprehensively examine the diverse spectrum of nutrients contained in broccoli and explore its medicinal potential to promote human health.

4.
Org Lett ; 23(13): 5098-5101, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34124917

ABSTRACT

α-Haloketones are valuable intermediates in the synthesis of pharmaceuticals and natural products because they display two electrophiles. Although chemoselective additions to each of these functional groups are known, the use of fluorinated nucleophiles has not been characterized, except for the dimerization of fluorohalomethyl ketones. Our studies demonstrate the use of difluoroenolates to create difluorinated bromohydrins and chlorohydrins from α-haloketones without any cyclization or rearrangement due to the mild conditions.


Subject(s)
Chlorohydrins/chemical synthesis , Ketones/chemical synthesis , Alcohols , Chlorohydrins/chemistry , Cyclization , Halogenation , Ketones/chemistry
5.
Bioorg Med Chem Lett ; 32: 127720, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33259925

ABSTRACT

Flavones are valuable scaffolds in medicinal chemistry, especially as they display activity as antioxidants and neuroprotective agents. The need to incorporate a fluorine atom on flavones has driven much of the recent synthetic work in this area. We now report a route for the production of 3-fluorinated derivatives of 3',4',5'-trihydroxyflavone and 3',4',5'-trimethoxyflavone. Biological evaluation of these agents, along with their non-fluorinated counterparts, demonstrate that antioxidant activity may be enhanced whereas neuroprotective activity is conserved. Also, the 3-fluoro-3',4',5'-trihydroxyflavone can act as an NMR probe to detect structural changes during its action as a radical scavenger.


Subject(s)
Flavones/chemical synthesis , Flavonoids/chemistry , Neuroprotective Agents/chemistry , Animals , Antioxidants/chemistry , Cell Survival/drug effects , Flavones/chemistry , Halogenation , Magnetic Resonance Spectroscopy , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/pharmacology , Neurotoxins/pharmacology , Rats , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
6.
J Org Chem ; 84(18): 11665-11675, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31449418

ABSTRACT

Controlling the cleavage of carbon-carbon bonds during a chemical reaction is a substantial challenge; however, synthetic methods that accomplish this objective produce valuable and often unexplored reactivity. We have designed a mild process to generate α,α-difluorobenzyl carbanions in the presence of potassium carbonate by exploiting the cleavage of C-C bonds during the release of trifluoroacetate. The initiating reagent is potassium carbonate, which represents an improvement over existing protocols that require a strong base. Fragmentation studies across substituted arenes and heteroarenes were conducted along with computational analyses to elucidate reactivity trends. Furthermore, the mildly generated α,α-difluorobenzyl carbanions from electron-deficient aromatics and heteroaromatic rings can react with aldehydes to create derivatives of difluoromethylbenzenes, which are valuable synthetic targets.


Subject(s)
Benzene Derivatives/chemical synthesis , Carbon/chemistry , Hydrocarbons, Fluorinated/chemical synthesis , Anions , Benzene Derivatives/chemistry , Fluoroacetates/chemistry , Hydrocarbons, Fluorinated/chemistry , Models, Molecular , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...