Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Ethnopharmacol ; 325: 117834, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38309486

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Olea europaea L. and Hyphaene thebaica L. are commonly employed by traditional healers in Africa for treating and preventing hypertension, either individually or in a polyherbal preparation (Ifanosine). AIM OF THE STUDY: The primary aim was to assess the antihypertensive effects of Olea europaea L. leaves aqueous extract (OEL), Hyphaene thebaica L. mesocarp extract (HT), and the Ifanosine on isolated rat aorta rings. The secondary objective was to evaluate the clinical benefits of a new oral formulation of Ifanosine. MATERIALS AND METHODS: In vitro studies using an isometric transducer examined the antihypertensive effects of HT, OEL, and Ifanosine on rat aorta. Ussing chambers technic were employed to measure mucosal to serosal fluxes and total transepithelial electrical conductance (Gt) to assess the intestinal bioavailability of HT, OEL, and Ifanosine. HPLC was utilized to determine the phytochemical composition of OEL and HT extracts. Subchronic toxicity investigations involved two groups of rats, treated with either water (control) or Ifanosine at 5 g/kg for 28 days. Clinical benefits of the new Ifanosine formulation were evaluated in an observational study with 32 hypertensive patients receiving a fixed oral dose of 3.5 mg three times a day for 30 days. RESULTS: Aqueous extracts induced dose-dependent relaxation of rat aorta rings, with HT and OEL having higher IC50 values than Ifanosine (IC50 = 44.76 ± 1.35 ng/mL, 58.67 ± 1.02 ng/mL, and 29.46 ± 0.26 ng/mL, respectively). The pA2 values of OEL and HT were 1 and 0.6, respectively, while Ifanosine was 0.06. Intestinal bioavailability studies revealed better Prazosin bioavailability than plant extracts. Toxicological studies demonstrated the safety of Ifanosine, supported by histological examinations and biochemical parameters in rat blood. Biochemical analyses indicated flavonoids and phenolic acids as dominant active constituents. Clinical benefits in humans included reduced SBP, DBP, LDL-c, VLDL-c, and TAG, and increased HDL-c without overt adverse effects. CONCLUSION: This study validates the traditional use of OEL and HT for hypertension and advocates for alternative and combinatorial polyphytotherapy (ACP) to enhance traditional remedies.


Subject(s)
Hypertension , Olea , Humans , Rats , Animals , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Antihypertensive Agents/analysis , Olea/chemistry , Hypertension/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Plant Leaves/chemistry , Treatment Outcome
2.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38256929

ABSTRACT

BACKGROUND: Orlistat (ORL) is an effective irreversible inhibitor of the lipase enzyme, and it possesses anticancer effects and limited aqueous solubility. This study was designed to improve the aqueous solubility, oral absorption, and tissue distribution of ORL via the formulation of nanocrystals (NCs). METHODS: ORL-NC was prepared using the liquid antisolvent precipitation method (bottom-up technology), and it demonstrated significantly improved solubility compared with that of the blank crystals (ORL-BCs) and untreated ORL powder. The biodistribution and relative bioavailability of ORL-NC were investigated via the radiolabeling technique using Technetium-99m (99mTc). Female Swiss albino mice were used to examine the antitumor activity of ORL-NC against solid Ehrlich carcinoma (SEC)-induced hepatic damage in mice. RESULTS: The prepared NCs improved ORL's solubility, bioavailability, and tissue distribution, with evidence of 258.70% relative bioavailability. In the in vivo study, the ORL-NC treatment caused a reduction in all tested liver functions (total and direct bilirubin, AST, ALT, and ALP) and improved modifications in liver sections that were marked using hematoxylin and eosin staining (H&E) and immunohistochemical staining (Ki-67 and ER-α) compared with untreated SEC mice. CONCLUSIONS: The developed ORL-NC could be considered a promising formulation approach to enhance the oral absorption tissue distribution of ORL and suppress the liver damage caused by SEC.

3.
Heliyon ; 9(12): e23112, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38144360

ABSTRACT

Objectives: This study aimed to assess compliance with legal requirements, safe medication storage and staffing standards in community pharmacies in Punjab, Pakistan. Method: We conducted a three-step cross-sectional study using observations, questionnaires and face-to-face interviews in 544 systematically-selected community pharmacies. We used descriptive statistic and one-way ANOVA to assess the data. Results: Only 23 (4.2 %) pharmacies had accurate area and only 3.9 % had appropriate walls. In total, 23.3 % had glass-fronted shelves and 38.2 % had a glass door. More than half (53.8 %) had separate narcotics shelves and 43.0 % a separate shelf of expired medicines. Less than half (47.5 %) of the pharmacies were able to maintain hygiene. About 36.2 % of the pharmacies segregated different types of product. Drugs were protected from direct sunlight in most (61.3 %) pharmacies, but the refrigerator was working properly in less than half (43.4 %) and only a very small number (2.4 %) had an alternative power supply for the refrigerator. Only 37 (6.8 %) were able to maintain an appropriate room temperature. The vast majority (93.0 %) displayed a valid drug sale license, but a qualified person/pharmacist was only present in 4.8 %. The average number of employees was 4.2, and more than 71.0 % of staff had 10-12 years of formal education. Only 0.2 % of employees could explain term "PRN", although 57.3 % explained "IV" correctly. About 22.8 % replied correctly about the room temperature but the vast majority (97.6 %) did not know about cold chain temperature. The location of the pharmacy (p-value = 0.045) affected its performance. Conclusions: Noncompliance with legal requirements, unsafe drug storage and limited human resources reflect the poor enforcement of drug laws in Pakistan. The findings suggest that there is a need to strengthen inspection and management of community pharmacies.

4.
Biomedicines ; 11(12)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38137382

ABSTRACT

The development of bacterial resistance is an increasing global concern that requires discovering new antibacterial agents and strategies. Bacterial quorum sensing (QS) systems play important roles in controlling bacterial virulence, and their targeting could lead to diminishing bacterial pathogenesis. In this context, targeting QS systems without significant influence on bacterial growth is assumed as a promising strategy to overcome resistance development. This study aimed at evaluating the anti-QS and anti-virulence activities of the ß-adrenoreceptor antagonist propranolol at sub-minimal inhibitory concentrations (sub-MIC) against two Gram-negative bacterial models Pseudomonas aeruginosa and Serratia marcescens. The effect of propranolol on the expression of QS-encoding genes was evaluated. Additionally, the affinity of propranolol to QS receptors was virtually attested. The influence of propranolol at sub-MIC on biofilm formation, motility, and production of virulent factors was conducted. The outcomes of the propranolol combination with different antibiotics were assessed. Finally, the in vivo protection assay in mice was performed to assess propranolol's effect on lessening the bacterial pathogenesis. The current findings emphasized the significant ability of propranolol at sub-MIC to reduce the formation of biofilms, motility, and production of virulence factors. In addition, propranolol at sub-MIC decreased the capacity of tested bacteria to induce pathogenesis in mice. Furthermore, propranolol significantly downregulated the QS-encoding genes and showed significant affinity to QS receptors. Finally, propranolol at sub-MIC synergistically decreased the MICs of different antibiotics against tested bacteria. In conclusion, propranolol might serve as a plausible adjuvant therapy with antibiotics for the treatment of serious bacterial infections after further pharmacological and pharmaceutical studies.

5.
Medicina (Kaunas) ; 59(10)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37893466

ABSTRACT

Background and Objectives: Curcumin, derived from Curcuma longa, is a well-known traditional medicinal compound recognized for its therapeutic attributes. Nevertheless, its efficacy is hampered by limited bioavailability, prompting researchers to explore the application of nanoemulsion as a potential alternative. Materials and Methods: This study delves into the antihypertensive effects of curcumin nanoemulsion (SNEC) by targeting the renin-angiotensin-aldosterone system (RAAS) and oxidative stress in deoxycorticosterone acetate (DOCA) salt-induced hypertensive rats. To gauge the cardio-protective impact of SNEC in DOCA salt-induced hypertension, molecular docking was undertaken, uncovering curcumin's high affinity and adept binding capabilities to the active site of angiotensin-converting enzyme (ACE). Additionally, the investigation employed uninephrectomized rats to assess hemodynamic parameters via an AD instrument. Serum ACE, angiotensin II, blood urea nitrogen (BUN), and creatinine levels were quantified using ELISA kits, while antioxidant parameters were evaluated through chemical assays. Result: The outcomes of the molecular docking analysis revealed robust binding of curcumin to the ACE active site. Furthermore, oral administration of SNEC significantly mitigated systolic, diastolic, and mean arterial blood pressure in contrast to the DOCA-induced hypertensive group. SNEC administration also led to a reduction in left ventricular end-diastolic pressure (LVEDP) and an elevation in the maximum rate of left ventricular pressure rise (LV (dP/dt) max). Moreover, SNEC administration distinctly lowered serum levels of ACE and angiotensin II compared to the hypertensive DOCA group. Renal markers, including serum creatinine and BUN, displayed a shift toward normalized levels with SNEC treatment. Additionally, SNEC showcased potent antioxidant characteristics by elevating reduced glutathione, catalase, and superoxide dismutase levels, while decreasing the concentration of thiobarbituric acid reactive substances. Conclusions: Collectively, these findings underscore that curcumin nanoemulsion exerts noteworthy cardio-protective effects through ACE activity inhibition and remarkable antioxidant properties.


Subject(s)
Curcumin , Desoxycorticosterone Acetate , Hypertension , Rats , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Curcumin/pharmacology , Curcumin/therapeutic use , Desoxycorticosterone Acetate/adverse effects , Angiotensin II/adverse effects , Molecular Docking Simulation , Rats, Wistar , Antihypertensive Agents/therapeutic use , Blood Pressure
6.
Medicina (Kaunas) ; 59(10)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37893532

ABSTRACT

Background and Objectives: Paracetamol overdose is a significant global issue due to its widespread use, which can lead to a lack of awareness regarding its potential side effects. Paracetamol can harm the liver, possibly resulting in liver failure. Conversely, this study employed extracts from Petroselinum crispum (PC), known for its rich content of bioactive compounds, with demonstrated antioxidant properties shown in previous research as well as protective effects against various diseases. The primary objective of this study was to investigate the potential protective effects of Petroselinum crispum on altered hematological and biochemical parameters in the blood of rats exposed to paracetamol. Materials and Methods: The study involved twenty Wistar rats divided into four groups. Different groups of male rats were administered PC extract at 200 mg/kg body weight daily for 15 days, along with a standard reference dose of paracetamol at 200 mg/kg. The study assessed hepatoprotection capacity by analyzing liver enzymes such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), bilirubin, albumin, and lipid profiles. Renal safety was evaluated through creatinine, urea, uric acid, lactate dehydrogenase (LDH), and total protein. Additionally, histopathological examinations of the liver and kidneys were conducted. Results: Following Paracetamol overdose, there were reductions in hemoglobin levels, serum total protein, albumin, and uric acid. Paracetamol overdose also elevated levels of several blood biomarkers, including creatinine, urea, nitrogen, ALT, AST, triglycerides, LDH activity, white blood cell count, and platelet count compared to the control group. However, using an ethanolic extract of Petroselinum crispum significantly mitigated the severity of these alterations and the extent of the effect correlated with the dose administered. Parsley extract helped prevent proteinuria and low hemoglobin, which are common side effects of Paracetamol. Conclusions: Therefore, parsley may hold promise in managing liver and kidney conditions-particularly in addressing proteinuria. Ultimately, these results may have implications for human health by potentially mitigating paracetamol-induced renal, hepatic, and hematological toxicity.


Subject(s)
Acetaminophen , Drug-Related Side Effects and Adverse Reactions , Humans , Rats , Male , Animals , Acetaminophen/toxicity , Petroselinum , Rats, Wistar , Uric Acid/pharmacology , Creatinine/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/metabolism , Liver , Proteinuria , Albumins , Urea , Hemoglobins
7.
Microorganisms ; 11(9)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37764091

ABSTRACT

There is a great need for novel approaches to treating bacterial infections, due to the vast dissemination of resistance among pathogenic bacteria. Staphylococcus aureus are ubiquitous Gram-positive pathogenic bacteria and are rapidly acquiring antibiotic resistance. Here, celecoxib was encapsulated into cubosomal nanoparticles, and the particle morphology, size distribution, zeta potential, entrapment efficiency, and celecoxib release were evaluated in vitro. Also, a systemic infection model in mice elucidated the in vivo antibacterial action of the celecoxib cubosomes. Cubosomes are a nanotechnology-based delivery system which can adhere to the external peptidoglycan layers of Gram-positive bacteria and penetrate them. The size distribution investigation revealed that the prepared celecoxib-loaded cubosomes had a mean particle size of 128.15 ± 3.04 nm with a low polydispersity index of 0.235 ± 0.023. The zeta potential measurement showed that the prepared cubosomes had a negative surface charge of -17.50 ± 0.45, indicating a highly stable nanodispersion formation with little susceptibility to particle aggregation. The cubosomal dispersion exhibited an entrapment efficiency of 88.57 ± 2.36%. The transmission electron micrograph for the prepared celecoxib-loaded cubosomes showed a narrow size distribution for the cubosomal nanoparticles, which had a spherical shape and were non-aggregated. The tested cubosomes diminished the inflammation in the treated mice's liver and spleen tissues, as revealed by hematoxylin and eosin stain and Masson's trichrome stain. The immunostained tissues with nuclear factor kappa B and caspase-3 monoclonal antibodies revealed a marked decrease in these markers in the celecoxib-treated group, as it resulted in negative or weak immunostaining in liver and spleen that ranged from 4.54% to 17.43%. This indicates their inhibitory effect on the inflammatory pathway and apoptosis, respectively. Furthermore, they reduced the bacterial burden in the studied tissues. This is alongside a decrease in the inflammatory markers (interleukin-1 beta, interleukin-6, cyclooxygenase-2, and tumor necrosis factor-alpha) determined by ELISA and qRT-PCR. The IL-1ß levels were 16.66 ± 0.5 pg/mg and 17 ± 0.9 pg/mg in liver and spleen, respectively. Also, IL-6 levels were 85 ± 3.2 pg/mg and 84 ± 2.4 pg/mg in liver and spleen, respectively. In conclusion, the current study introduced cubosomes as an approach for the formulation of celecoxib to enhance its in vivo antibacterial action by improving its oral bioavailability.

8.
Drug Deliv ; 30(1): 2241665, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37537858

ABSTRACT

Canagliflozin (CFZ) is a sodium-glucose cotransporter-2 inhibitor (SGLT2) that lowers albuminuria in type-2 diabetic patients, cardiovascular, kidney, and liver disease. CFZ is classified as class IV in the Biopharmaceutical Classification System (BCS) and is characterized by low permeability, solubility, and bioavailability, most likely attributed to hepatic first-pass metabolism. Nanocrystal-based sublingual formulations were developed in the presence of sodium caprate, as a wetting agent, and as a permeability enhancer. This formulation is suitable for children and adults and could enhance solubility, permeability, and avoid enterohepatic circulation due to absorption through the sublingual mucosa. In the present study, formulations containing various surfactants (P237, P338, PVA, and PVP K30) were prepared by the Sono-homo-assisted precipitation ion technique. The optimized formula prepared with PVP-K30 showed the smallest particle size (157 ± 0.32 nm), Zeta-potential (-18 ± 0.01), and morphology by TEM analysis. The optimized formula was subsequently formulated into a sublingual tablet containing Pharma burst-V® with a shorter disintegration time (51s) for the in-vivo study. The selected sublingual tablet improved histological and biochemical markers (blood glucose, liver, and kidney function), AMP-activated protein kinase (AMPK), and protein kinase B (AKT) pathway compared to the market formula, increased CFZ's antidiabetic potency in diabetic rabbits, boosted bioavailability by five-fold, and produced faster onset of action. These findings suggest successful treatment of diabetes with CFZ nanocrystal-sublingual tablets.


Subject(s)
Diabetes Mellitus, Type 2 , Nanoparticles , Sodium-Glucose Transporter 2 Inhibitors , Animals , Rabbits , Canagliflozin , Tablets/chemistry , Solubility , Povidone/chemistry , Permeability , Nanoparticles/chemistry
9.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-37259403

ABSTRACT

Electrospraying (ES) technology is considered an efficient micro/nanoparticle fabrication technique with controlled dimensions and diverse morphology. Gelurice® 48/16 (GLR) has been employed to stabilize the aqueous dispersion of Celecoxib (CXB) for enhancing its solubility and oral bioavailability. Our formula is composed of CXB loaded in polyvinylpyllodine (PVP) stabilized with GLR to formulate microparticles (MPs) (CXB-GLR-PVP MPs). CXB-GLR-PVP MPs display excellent in vitro properties regarding particle size (548 ± 10.23 nm), zeta potential (-20.21 ± 2.45 mV), and drug loading (DL, 1.98 ± 0.059 mg per 10 mg MPs). CXB-GLR-PVP MPs showed a significant (p < 0.05) higher % cumulative release after ten minutes (50.31 ± 4.36) compared to free CXB (10.63 ± 2.89). CXB exhibited good dispersibility, proved by X-ray diffractometry (XRD), adequate compatibility of all components, confirmed by Fourier-Transform Infrared Spectroscopy (FTIR), and spherical geometry as revealed in scanning electron microscopy (SEM). Concerning our anti-inflammatory study, there was a significant decrease in the scores of the inflammatory markers' immunostaining in the CXB-GLR-PVP MPs treated group. Also, the amounts of the oxidative stress biomarkers, as well as mRNA expression of interleukins (IL-1ß and IL-6), considerably declined (p < 0.05) in CXB-GLR-PVP MPs treated group alongside an enhancement in the histological features was revealed. CXB-GLR-PVP MPs is an up-and-coming delivery system that could be elucidated in future clinical investigations.

10.
Biomed Pharmacother ; 165: 115005, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37327586

ABSTRACT

Ulcerative colitis (UC), a chronic autoimmune disease of the gut with a relapsing and remitting nature, considers a major health-care problem. DSS is a well-studied pharmacologically-induced model for UC. Toll-Like Receptor 4 (TLR4) and its close association with p-38-Mitogen-Activated Protein Kinase (p-38 MAPK) and nuclear factor kappa B (NF-κB) has important regulatory roles in inflammation and developing UC. Probiotics are gaining popularity for their potential in UC therapy. The immunomodulatory and anti-inflammatory role of azithromycin in UC remains a knowledge need. In the present rats-established UC, the therapeutic roles of oral probiotics (60 billion probiotic bacteria per kg per day) and azithromycin (40 mg per kg per day) regimens were evaluated by measuring changes in disease activity index, macroscopic damage index, oxidative stress markers, TLR4, p-38 MAPK, NF-κB signaling pathway in addition to their molecular downstream; tumor necrosis factor alpha (TNFα), interleukin (IL)1ß, IL6, IL10 and inducible nitric oxide synthase (iNOS). After individual and combination therapy with probiotics and azithromycin regimens, the histological architecture of the UC improved with restoration of intestinal tissue normal architecture. These findings were consistent with the histopathological score of colon tissues. Each separate regimen lowered the remarkable TLR4, p-38 MAPK, iNOS, NF-κB as well as TNFα, IL1ß, IL6 and MDA expressions and elevated the low IL10, glutathione and superoxide dismutase expressions in UC tissues. The combination regimen possesses the most synergistic beneficial effects in UC that, following thorough research, should be incorporated into the therapeutic approach in UC to boost the patients' quality of life.


Subject(s)
Colitis, Ulcerative , Colitis , Rats , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , NF-kappa B/metabolism , Interleukin-10/metabolism , Toll-Like Receptor 4/metabolism , Azithromycin/pharmacology , Azithromycin/therapeutic use , Dextrans/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Quality of Life , Colon , Dextran Sulfate/toxicity , Disease Models, Animal , Colitis/metabolism
11.
Life (Basel) ; 13(6)2023 May 25.
Article in English | MEDLINE | ID: mdl-37374031

ABSTRACT

The accumulation of body fat due to an imbalance between calorie intake and energy expenditure is called obesity. Metabolic syndrome increases the risk of heart disease, type 2 diabetes, and stroke. The purpose of this study was to determine the effect of Jatropha tanjorensis (J.T.) and Fraxinus micrantha (F.M.) leaf extracts on high-fat diet-induced obesity in rats. Normal control, high-fat diet (HFD) control, orlistat standard, and test groups were created using male Albino Wistar rats (n = 6 per group) weighing 190 ± 15 g. Except for the control group, all regimens were administered orally and continued for 6 weeks while on HFD. Evaluation criteria included body weight, food intake, blood glucose, lipid profile, oxidative stress, and liver histology. High-Performance Thin Layer Chromatography (HPTLC) analysis was performed using a solvent system (7:3 hexane: ethyl acetate for sitosterol solution and Jatropha tanjorensis extracts and 6:4 hexane: ethyl acetate: 1 drop of acetic acid for esculetin and Fraxinus micrantha extracts). There were no deaths during the 14 days before the acute toxicity test, indicating that aqueous and ethanolic extracts of both J.T. and F.M. did not produce acute toxicity at any dose (5, 50, 300, and 2000 mg/kg). The ethanolic and aqueous extracts of J.T. and F.M. leaves at 200 and 400 mg/kg/orally showed a reduction in weight gain, feed intake, and significant decreases in serum glucose and lipid profile. As compared to inducer HFD animals, co-treatment of aqueous and ethanolic extract of both J.T. and F.M. and orlistat increased the levels of antioxidant enzymes and decreased lipid peroxidation. The liver's histological findings showed that the sample had some degree of protection. These results indicate that ethanolic samples of J.T. have antidiabetic potential in diabetic rats fed an HFD. The strong antioxidant potential and restoration of serum lipid levels may be related to this. Co-treatment of samples JTE, JTAQ, FME, FMAQ and orlistat resulted in an increase in antioxidant enzymes and reduction in lipid peroxidation as compared to inducer HFD animals. We report, for the first time, on using these leaves to combat obesity.

12.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36559028

ABSTRACT

As the ninth leading cause of death globally, diabetes mellitus (DM) is considered to be the worst chronic metabolic disease requiring an enormous need for healthcare with over 578 million expected cases by 2023. Several recent findings have demonstrated that mediating the activity of carbohydrate-hydrolyzing enzymes, including α-amylase and α-glucosidase, could be a potential strategy for managing the development of DM. In the presented study, a novel set of 1,3,5-trisubstituted-2-thioxoimidazolidin-4-ones was designed, synthesized, and characterized. The antidiabetic activity of the synthesized compounds was explored by assessing their inhibitory activity toward α-amylase and α-glucosidase enzymes. The results demonstrated that this class of compounds exhibits considerable inhibitory activity toward both α-amylase and α-glucosidase enzymes. Among the synthesized compounds, compound 5a demonstrated the most inhibitory activity with IC50 of 5.08 and µg/mL and 0.21 µg/mL toward α-glucosidase and α-amylase activities, respectively, as compared to the drug Acarbose (IC50 = 5.76 µg/mL and 0.39 µg/mL, respectively). To gain insights into the antidiabetic potential of compound 5a, we assessed the cytotoxic and antioxidant activities. Our findings indicated that compound 5a displays considerable cytotoxicity toward WI-38 cells with an IC50 of 88.54 µg/mL, as compared to the drug Celecoxib (IC50 = 93.05 µg/mL). Further, compound 5a exhibited a high scavenging activity toward 2,2-Diphenyl1-picrylhydrazyl (DPPH) free radicals (IC50 = 51.75 µg/mL) and showed a low potential to produce ROS as indicated by the monitoring of the generated H2O2 (132.4 pg/mL), as compared to Trolox (IC50 = 58.09 µg/mL) and Celecoxib (171.6 pg/mL). Finally, we performed extensive molecular modeling studies to affirm the binding affinity of this class of compounds to the binding pocket of α-amylase and α-glucosidase enzymes. Collectively, our findings indicate that this class of compounds, particularly compound 5a, could be utilized as a lead structure for the development of novel compounds with potential antidiabetic and antioxidant activities.

13.
Antibiotics (Basel) ; 11(9)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36140030

ABSTRACT

In the present study, we utilized Stevia rebaudiana L. (SRLe) extract to in situ biosynthesize nanoscale alpha hematite (α-Fe2O3) nanoparticles (NPs) with potent antioxidant, antimicrobial, and anticancer properties. SRLe-α-Fe2O3 was characterized using physiochemical analyses, including UV/Vis, FTIR, XRD, DLS, EDX, SEM, and TEM studies. Among tested solvents, CHCl3/MeOH (2:1 v/v) SRL extract (least polar solvent) contained the highest EY, TPC, and antioxidant capacity of ~3.5%, ~75 mg GAE/g extract, and IC50 = 9.87 ± 0.7 mg/mL, respectively. FTIR confirmed the engagement of coating operation to the colloidal α-Fe2O3 NPs. TEM, SEM, and DLS revealed that SRLe-α-Fe2O3 has a spherical shape, uniform size distribution with aggregation for an average size of ~18.34 nm, and ζ = -19.4 mV, forming a repulsive barrier that helped to improve stability. The synthesized nanoparticles displayed considerable antibacterial activity against E. coli and S. aureus bacterial growth, and exhibited superior activity against the A549 lung cancer cell lines. These findings indicate that the increased availability of bioactive substances with antioxidant properties of SRLe makes it a potentially interesting material for the preparation of biologically active compounds and green synthesis of nanoparticles.

14.
Life (Basel) ; 12(9)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36143424

ABSTRACT

With more than 17 clinically approved Drugs and over 20 prodrugs under clinical investigations, marine bacteria are believed to have a potential supply of innovative therapeutic bioactive compounds. In the current study, Kocuria sp. strain AG5 isolated from the Red Sea was identified and characterized by biochemical and physiological analysis, and examination of a phylogenetic 16S rRNA sequences. Innovative exopolysaccharide (EPS) was separated from the AG5 isolate as a major fraction of EPS (EPSR5, 6.84 g/L-1). The analysis of EPSR5 revealed that EPSR5 has a molecular weight (Mw) of 4.9 × 104 g/mol and number average molecular weight (Mn) of 5.4 × 104 g/mol and contains sulfate (25.6%) and uronic acid (21.77%). Analysis of the monosaccharide composition indicated that the EPSR5 fraction composes of glucose, galacturonic acid, arabinose, and xylose in a molar ratio of 2.0:0.5:0.25:1.0, respectively. Assessment of the pharmacological potency of EPSR5 was explored by examining its cytotoxicity, anti-inflammatory, antioxidant, and anti-acetylcholine esterase influences. The antioxidant effect of EPSR5 was dose- and time-dependently increased and the maximum antioxidant activity (98%) was observed at 2000 µg/mL after 120 min. Further, EPSR5 displayed a significant repressive effect regarding the proliferation of HepG-2, A-549, HCT-116, MCF7, HEP2, and PC3 cells with IC50 453.46 ± 21.8 µg/mL, 873.74 ± 15.4 µg/mL, 788.2 ± 32.6 µg/mL, 1691 ± 44.2 µg/mL, 913.1 ± 38.8 µg/mL, and 876.4 ± 39.8 µg/mL, respectively. Evaluation of the inhibitory activity of the anti-inflammatory activity of EPSR5 indicated that EPSR5 has a significant inhibitory activity toward lipoxygenase (5-LOX) and cyclooxygenase (COX-2) activities (IC50 15.39 ± 0.82 µg/mL and 28.06 ± 1.1 µg/mL, respectively). Finally, ESPR5 presented a substantial hemolysis suppressive action with an IC50 of 65.13 ± 0.89 µg /mL, and a considerable inhibitory activity toward acetylcholine esterase activity (IC50 797.02 µg/mL). Together, this study reveals that secondary metabolites produced by Kocuria sp. strain AG5 marine bacteria serve as an important source of pharmacologically active compounds, and their impact on human health is expected to grow with additional global work and research.

15.
Biomed Res Int ; 2022: 2363410, 2022.
Article in English | MEDLINE | ID: mdl-35909480

ABSTRACT

PVL (proliferative verrucous leukoplakia) has distinct clinical characteristics. They have a proclivity for multifocality, a high recurrence rate after treatment, and malignant transformation, and they can progress to verrucous or squamous cell carcinoma. AI can aid in the diagnosis and prognosis of cancers and other diseases. Computational algorithms can spot tissue changes that a pathologist might overlook. This method is only used in a few studies to diagnose LB and PVL. To see if their cellular nuclei differed and if this cellular compartment could classify them, researchers used a computational system and a polynomial classifier to compare OLs and PVLs. 161 OL and 3 PVL specimens in the lab were grown, photographed, and used for training and computation. Exam orders revealed patients' sociodemographics and clinical pathologies. The nucleus was segmented using Mask R-CNN, and LB and PVL were classified using a polynomial classifier based on nucleus area, perimeter, eccentricity, orientation, solidity, entropies, and Moran Index (a measure of disorderliness). The majority of OL patients were male smokers; most PVL patients were female, with a third having malignant transformation. The neural network correctly identified cell nuclei 92.95% of the time. Except for solidity, 11 of the 13 nuclear characteristics compared between the PVL and the LB showed significant differences. The 97.6% under the curve of the polynomial classifier was used to classify the two lesions. These results demonstrate that computational methods can aid in diagnosing these two lesions.


Subject(s)
Carcinoma, Squamous Cell , Carcinoma, Verrucous , Mouth Neoplasms , Artificial Intelligence , Carcinoma, Squamous Cell/pathology , Carcinoma, Verrucous/diagnosis , Carcinoma, Verrucous/pathology , Cell Transformation, Neoplastic/pathology , Female , Humans , Leukoplakia, Oral/diagnosis , Leukoplakia, Oral/pathology , Leukoplakia, Oral/therapy , Male , Mouth Neoplasms/diagnosis , Mouth Neoplasms/pathology
16.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35890131

ABSTRACT

Acute heart failure (AHF) is one of the most common diseases in old age that can lead to mortality. Systemic hypoperfusion is associated with hepatic ischemia-reperfusion injury, which may be irreversible. Ischemic hepatitis due to AHF has been linked to the pathogenesis of liver damage. In the present study, we extensively investigated the role of mitochondrial dynamics-related proteins and their epigenetic regulation in ischemic liver injury following AHF and explored the possible hepatoprotective role of carvedilol. The biochemical analysis revealed that the ischemic liver injury following AHF significantly elevated the activity of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) enzymes, the level of total and direct bilirubin, and the expression of hepatic mitogen-activated protein kinase (MAPK), dynamin-1-like protein (DNM1L), and hepatic miRNA-17. At the same time, it significantly reduced the serum albumin level, the activity of hepatic superoxide dismutase (SOD), and the expression of mitochondrial peroxisome proliferator-activated receptor-1α (PGC-1α), and mitofusin 2 (Mtf2). The histological examination of the liver tissue revealed degenerated hepatocytes. Interestingly, administration of carvedilol either prior to or after isoprenaline-induced AHF significantly improved the liver function and reversed the deterioration effect of AHF-induced ischemic hepatitis, as demonstrated by biochemical, immunohistochemical, and histological analysis. Our results indicated that the hepatoprotective effect of carvedilol in ameliorating hepatic ischemic damage could be attributed to its ability to target the mitochondrial dynamics-related proteins (Mtf2, DNM1L and PGC-1α), but also their epigenetic regulator miRNA-17. To further explore the mode of action of carvedilol, we have investigated, in silico, the ability of carvedilol to target dynamin-1-like protein and mitochondrial dynamics protein (MID51). Our results revealed that carvedilol has a high binding affinity (-14.83 kcal/mol) toward the binding pocket of DNM1L protein. In conclusion, our study highlights the hepatoprotective pharmacological application of carvedilol to attenuate ischemic hepatitis associated with AHF.

17.
J Healthc Eng ; 2022: 4062974, 2022.
Article in English | MEDLINE | ID: mdl-35360479

ABSTRACT

Toxoplasmosis is a zoonotic illness caused by Toxoplasma gondii. Those with a normal immune system normally recover without treatment. Immunocompromised individuals and pregnant women must be treated regularly. Toxoplasmosis is a serious illness that may reactivate in immunocompromised patients. A retrospective study using machine learning of toxoplasmosis patients at Government Fever Hospital in Gorantla, Guntur, India, included 25 women, eight of whom were pregnant. These included sex, age, symptoms and side effects, pregnancy, ophthalmic, and antitoxoplasmosis titers, and treatment regimens. Protease mobility and specific activity were increased in toxoplasmosis-infected women's sera, although not significantly (p=0.05). However, there was no discernible decline. The impacts of nanoparticle impact demonstrated a 52.24 percent drop in compound concentration in the presence of zinc nanoparticles, whereas the effect of ZnO nanoparticles was 51.37 percent. Zinc nanoparticles lowered IgA, IgG, and IgM levels in the eye.


Subject(s)
Machine Learning , Toxoplasmosis/diagnosis , Zinc Oxide , Blood Proteins , Female , Humans , Immunoglobulins , Metal Nanoparticles , Pregnancy , Retrospective Studies , Zinc
18.
Pharmaceutics ; 14(4)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35456717

ABSTRACT

There has been an increasing demand for the development of nanocarriers targeting multiple diseases with a broad range of properties. Due to their tiny size, giant surface area and feasible targetability, nanocarriers have optimized efficacy, decreased side effects and improved stability over conventional drug dosage forms. There are diverse types of nanocarriers that have been synthesized for drug delivery, including dendrimers, liposomes, solid lipid nanoparticles, polymersomes, polymer-drug conjugates, polymeric nanoparticles, peptide nanoparticles, micelles, nanoemulsions, nanospheres, nanocapsules, nanoshells, carbon nanotubes and gold nanoparticles, etc. Several characterization techniques have been proposed and used over the past few decades to control and predict the behavior of nanocarriers both in vitro and in vivo. In this review, we describe some fundamental in vitro, ex vivo, in situ and in vivo characterization methods for most nanocarriers, emphasizing their advantages and limitations, as well as the safety, regulatory and manufacturing aspects that hinder the transfer of nanocarriers from the laboratory to the clinic. Moreover, integration of artificial intelligence with nanotechnology, as well as the advantages and problems of artificial intelligence in the development and optimization of nanocarriers, are also discussed, along with future perspectives.

19.
J Healthc Eng ; 2022: 1959371, 2022.
Article in English | MEDLINE | ID: mdl-35310193

ABSTRACT

Of the most popular applications of artificial intelligence (AI), those used in the health sector are the ones that represent the largest proportion, in terms of use and expectation. An investigative systematization model is proposed in the scientific training of nursing professionals, by articulating epistemological positions from previous studies on the subject. In order to validate the model proposed, a prototype was created to present an application that could help nurses in their clinical processes, storing their experiences in a case base for future research. The prototype consisted of digitizing paediatric nursing diagnoses and inserting them into a case base in order to assess the effectiveness of the prototype in handling these cases in a structure conducive to retrieval, adaptation, indexing, and case comparison. This work presents as a result a computational tool for the health area, employing one of the artificial intelligence techniques, case-based reasoning (CBR). The small governmental nursing education institution in Bangladesh used in this study did not yet have the systemization of nursing care (NCS) and computerized support scales.


Subject(s)
Artificial Intelligence , Bangladesh , Child , Humans
20.
Pharmaceutics ; 14(3)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35335908

ABSTRACT

Alcoholism is one of the most common diseases that can lead to the development of several chronic diseases including steatosis, and cognitive dysfunction. Statins are lipid-lowering drugs that are commonly prescribed for patients with fatty liver diseases; however, the exact effect of statins on cognitive function is still not fully understood. In the present study, we have investigated the molecular and microscopic basis of cognitive impairment induced by alcohol and/or Atorvastatin (ATOR) administration to male Wistar albino rats and explored the possible protective effect of acetylsalicylic acid (ASA). The biochemical analysis indicated that either alcohol or ATOR or together in combination produced a significant increase in the nucleotide-binding domain-like receptor 3 (NLRP3), interleukin-1ß (IL-1ß) miRNA155 expression levels in the frontal cortex of the brain tissue. The histological and morphometric analysis showed signs of degeneration in the neurons and the glial cells with aggregations of inflammatory cells and a decrease in the mean thickness of the frontal cortex. Immunohistochemical analysis showed a significant increase in the caspase-8 immunoreaction in the neurons and glial cells of the frontal cortex. Interestingly, administration of ASA reversed the deleterious effect of the alcohol and ATOR intake and improved the cognitive function as indicated by biochemical and histological analysis. ASA significantly decreased the expression levels of miRNA155, NLRP3, and IL1B, and produced a significant decrease in caspase-8 immunoreaction in the neurons and glial cells of the frontal cortex with a reduction in the process of neuroinflammation and neuronal damage. To further investigate these findings, we have performed an extensive molecular docking study to investigate the binding affinity of ASA to the binding pockets of the NLRP3 protein. Our results indicated that ASA has high binding scores toward the active sites of the NLRP3 NACHT domain with the ability to bind to the NLRP3 pockets by a set of hydrophilic and hydrophobic interactions. Taken together, the present study highlights the protective pharmacological effect of ASA to attenuate the deleterious effect of alcohol intake and long term ATOR therapy on the cognitive function via targeting miRNA155 and NLRP3 proteins.

SELECTION OF CITATIONS
SEARCH DETAIL
...