Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 170: 108032, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38310805

ABSTRACT

COVID-19, known as Coronavirus Disease 2019 primarily targets the respiratory system and can impact the cardiovascular system, leading to a range of cardiorespiratory complications. The current forefront in analyzing the dynamical characteristics of physiological systems and aiding clinical decision-making involves the integration of entropy-based complexity techniques with artificial intelligence. Entropy-based measures offer promising prospects for identifying disturbances in cardiorespiratory control system (CRCS) among COVID-19 patients by assessing the oxygen saturation variability (OSV) signals. In this investigation, we employ scale-based entropy (SBE) methods, including multiscale entropy (MSE), multiscale permutation entropy (MPE), and multiscale fuzzy entropy (MFE), to characterize the dynamical characteristics of OSV signals. These measurements serve as features for the application of traditional machine learning (ML) and deep learning (DL) approaches in the context of classifying OSV signals from COVID-19 patients during their illness and subsequent recovery. We use the Beurer PO-80 pulse oximeter which non-invasively acquired OSV and pulse rate data from COVID-19 infected patients during the active infection phase and after a two-month recovery period. The dataset comprises of 88 recordings collected from 44 subjects(26 men and 18 women), both during their COVID-19 illness and two months post-recovery. Prior to analysis, data preprocessing is performed to remove artifacts and outliers. The application of SBE measures to OSV signals unveils a reduction in signal complexity during the course of COVID-19. Leveraging these SBE measures as feature sets, we employ two DL techniques, namely the radial basis function network (RBFN) and RBFN with dynamic delay algorithm (RBFNDDA), for the classification of OSV data collected during and after COVID-19 recovery. To evaluate the classification performance, we employ standard metrics such as sensitivity, specificity, false positive rate (FPR), and the area under the receiver operator characteristic curve (AUC). Among the three scale-based entropy measures, MFE outperformed MSE and MPE by achieving the highest classification performance using RBFN with 13 best features having sensitivity (0.84), FPR (0.30), specificity (0.70) and AUC (0.77). The outcomes of our study demonstrate that SBE measures combined with DL methods offer a valuable approach for categorizing OSV signals obtained during and after COVID-19, ultimately aiding in the detection of CRCS dysfunction.


Subject(s)
COVID-19 , Deep Learning , Male , Humans , Female , Entropy , Artificial Intelligence , Electroencephalography/methods
2.
J Infect Public Health ; 17(4): 601-608, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38377633

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a respiratory illness that leads to severe acute respiratory syndrome and various cardiorespiratory complications, contributing to morbidity and mortality. Entropy analysis has demonstrated its ability to monitor physiological states and system dynamics during health and disease. The main objective of the study is to extract information about cardiorespiratory control by conducting a complexity analysis of OSV signals using scale-based entropy measures following a two-month timeframe after recovery. METHODS: This prospective study collected data from subjects meeting specific criteria, using a Beurer PO-80 pulse oximeter to measure oxygen saturation (SpO2) and pulse rate. Excluding individuals with a history of pulmonary/cardiovascular issues, the study analyzed 88 recordings from 44 subjects (26 men, 18 women, mean age 45.34 ± 14.40) during COVID-19 and two months post-recovery. Data preprocessing and scale-based entropy analysis were applied to assess OSV signals. RESULTS: The study found a significant difference in mean OSV during illness (95.08 ± 0.15) compared to post-recovery (95.59 ± 1.03), indicating reduced cardiorespiratory dynamism during COVID-19. Multiscale entropy analyses (MSE, MPE, MFE) confirmed lower entropy values during illness across all time scales, particularly at higher scales. Notably, the maximum distinction between illness and recovery phases was seen at specific time scales and similarity criteria for each entropy measure, showing statistically significant differences. CONCLUSIONS: The study demonstrates that the loss of complexity in OSV signals, quantified using scale-based entropy measures, has the potential to detect malfunctioning of cardiorespiratory control in COVID-19 patients. This finding suggests that OSV signals could serve as a valuable indicator for assessing the cardiorespiratory status of COVID-19 patients and monitoring their recovery progress.


Subject(s)
COVID-19 , Male , Humans , Female , Adult , Middle Aged , Oxygen Saturation , Prospective Studies
3.
Healthcare (Basel) ; 11(16)2023 Aug 13.
Article in English | MEDLINE | ID: mdl-37628478

ABSTRACT

An aim of the analysis of biomedical signals such as heart rate variability signals, brain signals, oxygen saturation variability (OSV) signals, etc., is for the design and development of tools to extract information about the underlying complexity of physiological systems, to detect physiological states, monitor health conditions over time, or predict pathological conditions. Entropy-based complexity measures are commonly used to quantify the complexity of biomedical signals; however novel complexity measures need to be explored in the context of biomedical signal classification. In this work, we present a novel technique that used Haar wavelets to analyze the complexity of OSV signals of subjects during COVID-19 infection and after recovery. The data used to evaluate the performance of the proposed algorithms comprised recordings of OSV signals from 44 COVID-19 patients during illness and after recovery. The performance of the proposed technique was compared with four, scale-based entropy measures: multiscale entropy (MSE); multiscale permutation entropy (MPE); multiscale fuzzy entropy (MFE); multiscale amplitude-aware permutation entropy (MAMPE). Preliminary results of the pilot study revealed that the proposed algorithm outperformed MSE, MPE, MFE, and MMAPE in terms of better accuracy and time efficiency for separating during and after recovery the OSV signals of COVID-19 subjects. Further studies are needed to evaluate the potential of the proposed algorithm for large datasets and in the context of other biomedical signal classifications.

4.
Healthc Technol Lett ; 10(4): 87-98, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37529409

ABSTRACT

Recently, medical technologies have developed, and the diagnosis of diseases through medical images has become very important. Medical images often pass through the branches of the network from one end to the other. Hence, high-level security is required. Problems arise due to unauthorized use of data in the image. One of the methods used to secure data in the image is encryption, which is one of the most effective techniques in this field. Confusion and diffusion are the two main steps addressed here. The contribution here is the adaptation of the deep neural network by the weight that has the highest impact on the output, whether it is an intermediate output or a semi-final output in additional to a chaotic system that is not detectable using deep neural network algorithm. The colour and grayscale images were used in the proposed method by dividing the images according to the Region of Interest by the deep neural network algorithm. The algorithm was then used to generate random numbers to randomly create a chaotic system based on the replacement of columns and rows, and randomly distribute the pixels on the designated area. The proposed algorithm evaluated in several ways, and compared with the existing methods to prove the worth of the proposed method.

5.
Article in English | MEDLINE | ID: mdl-36554640

ABSTRACT

Adoption of Ambient Assisted Living (AAL) technologies for geriatric healthcare is suboptimal. This study aims to present the AAL Adoption Diamond Framework, encompassing a set of key enablers/barriers as factors, and describe our approach to developing this framework. A systematic literature review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. SCOPUS, IEEE Xplore, PubMed, ProQuest, Science Direct, ACM Digital Library, SpringerLink, Wiley Online Library and grey literature were searched. Thematic analysis was performed to identify factors reported or perceived to be important for adopting AAL technologies. Of 3717 studies initially retrieved, 109 were thoroughly screened and 52 met our inclusion criteria. Nineteen unique technology adoption factors were identified. The most common factor was privacy (50%) whereas data accuracy and affordability were the least common factors (4%). The highest number of factors found per a given study was eleven whereas the average number of factors across all studies included in our sample was four (mean = 3.9). We formed an AAL technology adoption framework based on the retrieved information and named it the AAL Adoption Diamond Framework. This holistic framework was formed by organising the identified technology adoption factors into four key dimensions: Human, Technology, Business, and Organisation. To conclude, the AAL Adoption Diamond Framework is holistic in term of recognizing key factors for the adoption of AAL technologies, and novel and unmatched in term of structuring them into four overarching themes or dimensions, bringing together the individual and the systemic factors evolving around the adoption of AAL technology. This framework is useful for stakeholders (e.g., decision-makers, healthcare providers, and caregivers) to adopt and implement AAL technologies.


Subject(s)
Ambient Intelligence , Assisted Living Facilities , Self-Help Devices , Humans , Aged , Delivery of Health Care , Health Facilities
6.
Technol Health Care ; 28(3): 259-273, 2020.
Article in English | MEDLINE | ID: mdl-31594269

ABSTRACT

BACKGROUND: Brain neural activity is measured using electroencephalography (EEG) recording from the scalp. The EEG motor/imagery tasks help disabled people to communicate with the external environment. OBJECTIVE: In this paper, robust multiscale sample entropy (MSE) and wavelet entropy measures are employed using topographic maps' analysis and tabulated form to quantify the dynamics of EEG motor movements tasks with actual and imagery opening and closing of fist or feet movements. METHODS: To distinguish these conditions, we used the topographic maps which visually show the significance level of the brain regions and probes for dominant activities. The paired t-test and Posthoc Tukey test are used to find the significance levels. RESULTS: The topographic maps results obtained using MSE reveal that maximum electrodes show the significance in frontpolar, frontal, and few frontal and parietal brain regions at temporal scales 3, 4, 6 and 7. Moreover, it was also observed that the distribution of significance is from frontoparietal brain regions. Using wavelet entropy, the significant results are obtained at frontpolar, frontal, and few electrodes in right hemisphere. The highest significance is obtained at frontpolar electrodes followed by frontal and few central and parietal electrodes.


Subject(s)
Brain Mapping/methods , Electroencephalography/methods , Movement/physiology , Brain-Computer Interfaces , Foot/physiology , Hand/physiology , Humans , Wavelet Analysis
SELECTION OF CITATIONS
SEARCH DETAIL