Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 41(24): 14715-14729, 2023.
Article in English | MEDLINE | ID: mdl-37301608

ABSTRACT

Breast cancer is a silent killer malady among women and a serious economic burden in health care management. A case of breast cancer is diagnosed among women every 19 s, and every 74 s, a woman dies of breast cancer somewhere in the world. Despite the pop-up of progressive research, advanced treatment approaches, and preventive measures, breast cancer remains amplifying ailment. The nuclear factor kappa B (NF-κB) is a key transcription factor that links inflammation with cancer and is demonstrated as being involved in the tumorigenesis of breast cancer. The NF-κB transcription factor family in mammals consists of five proteins; c-Rel, RelA(p65), RelB, NF-κB1(p50), and NF-κB2(p52). The antitumor effect of NF-κB has also been explored in breast cancer, however, the actual treatment for breast cancer is yet to be discovered. This study is attributed to the identification of novel drug targets against breast cancer by targeting c-Rel, RelA(p65), RelB, NF-κB1(p50), and NF-κB2(p52) proteins. To identify the putative active compounds, a structure-based 3D pharmacophore model to the protein active site cavity was generated followed by virtual screening, molecular docking, and molecular dynamics (MD) simulation. Initially, a library of 45000 compounds were docked against the target protein and five compounds namely Z56811101, Z653426226, Z1097341967, Z92743432, and Z464101066 were selected for further analysis. The relative binding affinity of Z56811101, Z653426226, Z1097341967, Z92743432, and Z464101066 with NF-κB1 (p50), NF-κB2 (p52), RelA (p65), RelB, and c-Rel proteins were -6.8, -8, -7.0, -6.9, and -7.2 kcal/mol, respectively which remained stable throughout the simulations of 200 ns. Furthermore, all of these compounds depict maximum drug-like properties. Therefore, the proposed compounds can be a potential candidate for patients with breast cancer, but, experimental validation is needed to ensure their safety.Communicated by Ramaswamy H. Sarma.


Subject(s)
Breast Neoplasms , NF-kappa B , Animals , Humans , Female , NF-kappa B/metabolism , NF-kappa B p52 Subunit/metabolism , Breast Neoplasms/drug therapy , Molecular Docking Simulation , NF-kappa B p50 Subunit/metabolism , Mammals/metabolism
2.
J Biomol Struct Dyn ; : 1-16, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37306420

ABSTRACT

Breast cancer is the second major cause of cancer death in women globally. Avicennia marina is a medicinal plant that belongs to the family Acanthaceae and is known as grey or white mangrove. It has antioxidant, antiviral, anticancer, anti-inflammatory, and antibacterial activity in the treatment of various diseases including cancer. The goal of the study is to use a network pharmacology method to identify the potential phenomena of bioactive compounds of A. marina in the treatment of breast cancer and explore clinical biochemistry related aspects. A total of 74 active compounds of A. marina were retrieved from various databases as well as a literature review and collectively 429 targets of these compounds were identified by STITCH and Swiss Target Prediction databases. Breast cancer related 15606 potential targets were retrieved from the GeneCards database. A Venn diagram was drawn to find common key targets. To check the biological functions, the GO enrichment and KEGG pathways analysis of 171 key targets were performed through the DAVID database. To understand the interactions among key targets, Protein-protein interaction (PPI) studies were completed using the STRING database, and the Protein-Protein Interaction (PPI) network, as well as the compound-target-pathway network, was constructed using Cytoscape 3.9.0. Finally, molecular docking analysis of 5 hub genes named tumor protein 53 (TP53), catenin beta 1 (CTNNB1), interleukin 6 (IL6), tumor necrosis factor (TNF), and RAC-alpha serine/threonine protein kinases 1 (AKT1) with the active constituent of A. marina against breast cancer were performed. Additionally, a molecular docking study demonstrates that active drugs have a higher affinity for the target that may be used to decrease breast cancer. The molecular dynamic simulation analysis predicted the very stable behavior of docked complexes with no global structure deviations seen. The MMGBSA further supported strong intermolecular interactions with net energy values as; AKT1_Betulinic_acid (-20.97 kcal/mol), AKT1_Stigmasterol (-44.56 kcal/mol), TNF_Betulinic_acid (-28.68 kcal/mol) and TNF_Stigmastero (-29.47 kcal/mol).Communicated by Ramaswamy H. Sarma.

3.
Mol Med Rep ; 13(4): 3101-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26935153

ABSTRACT

Cadmium (Cd) is the most prevalent toxic metal present in livestock feed; therefore, the present study aimed to examine the ameliorative effects of grape seed extract (GSE) on cadmium chloride (CdCl2)­induced testicular dysfunction of Wistar rats. Male adult Wistar rats (40 rats; n=10/group) were divided into four equal groups. Group one was used as a control, and was given ad libitum access to food and water. Groups 2­4 were treated with CdCl2 [5 mg/kg body weight (BW)], GSE (400 mg/kg BW, orally), and GSE plus CdCl2, respectively. Blood and testicular tissues were collected and assayed for biochemical and histopathological changes, respectively. Testicular genes were expressed using semi­quantitative RT­PCR analysis. The results of the present study demonstrated that there was a decrease in serum testosterone levels following CdCl2 toxicity, which were normalized after GSE co-administration. Furthermore, CdCl2 significantly increased the serum levels of malondialdehyde, and decreased levels of antioxidants. At the histopathological level, the testes of the CdCl2 group exhibited congestion, edema in the interstitial blood vessels, irregular arrangement of the epithelial lining of the seminiferous tubules, and degeneration and sloughing of the spermatogenic cells, which accumulated in the center of the seminiferous tubules. Such pathological alterations were ameliorated following treatment with GSE in the CdCl2 plus GSE group. The immunohistochemical expression of B­cell lymphoma 2­associated X protein was high in the CdCl2 group, and low in the control and GSE groups. Co­treatment with GSE and CdCl2 exhibited ameliorative effects on the immunoreactivity of B­cell lymphoma 2­associated X protein. CdCl2 toxicity induced a significant downregulation in the mRNA expression levels of cytochrome P450 cholesterol side­chain cleavage enzyme, cytochrome P450 17A1, 3ß­hydroxysteroid dehydrogenase (3ß­HSD), 17ß­HSD, androgen receptor, steroidogenic acute regulatory protein, and follicle­stimulating hormone receptor. GSE administration exhibited a stimulatory effect on steroidogenesis­associated enzymes, and co­treatment with GSE and CdCl2 normalized and upregulated the mRNA expression levels of these examined genes. This study concluded that GSE has beneficial protective effects against the deleterious effects of CdCl2 on the testis.


Subject(s)
Cadmium/toxicity , Grape Seed Extract/pharmacology , Protective Agents/pharmacology , Testis/drug effects , Testis/metabolism , Animals , Antioxidants/metabolism , Biomarkers , Gene Expression , Gene Expression Regulation/drug effects , Male , Malondialdehyde/metabolism , RNA, Messenger/genetics , Rats , Testis/pathology , Testosterone/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...