Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomicrofluidics ; 18(3): 034105, 2024 May.
Article in English | MEDLINE | ID: mdl-38817733

ABSTRACT

The integration of microfabrication and microfluidics techniques into cell culture technology has significantly transformed cell culture conditions, scaffold architecture, and tissue biofabrication. These tools offer precise control over cell positioning and enable high-resolution analysis and testing. Culturing cells in 3D systems, such as spheroids and organoids, enables recapitulating the interaction between cells and the extracellular matrix, thereby allowing the creation of human-based biomimetic tissue models that are well-suited for pre-clinical drug screening. Here, we demonstrate an innovative microfluidic device for the formation, culture, and testing of hepatocyte spheroids, which comprises a large array of patterned microwells for hosting hepatic spheroid culture in a reproducible and organized format in a dynamic fluidic environment. The device allows maintaining and characterizing different spheroid sizes as well as exposing to various drugs in parallel enabling high-throughput experimentation. These liver spheroids exhibit physiologically relevant hepatic functionality, as evidenced by their ability to produce albumin and urea at levels comparable to in vivo conditions and the capability to distinguish the toxic effects of selected drugs. This highlights the effectiveness of the microenvironment provided by the chip in maintaining the functionality of hepatocyte spheroids. These data support the notion that the liver-spheroid chip provides a favorable microenvironment for the maintenance of hepatocyte spheroid functionality.

2.
Heliyon ; 10(7): e27559, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560135

ABSTRACT

Ethylene Glycol (EG) and diethylene Glycol (DEG) are two contaminants known to cause various human health problems. These glycols might be present in drug syrups that are based on glycerol, sorbitol, or polyethylene glycol. In late 2022, several batches of cough, antipyretics, and antihistamine syrups were reported to contain toxic levels of EG and DEG in multiple countries; this incident concerned the World Health Organization (WHO). From an analytical perspective, several methods of glycols analysis in pharmaceuticals have been reported in the literature, with the majority being dedicated to raw material analysis. This study aims to develop a selective method capable of evaluating a wide range of paediatric syrups in order to assess the safety of commercially available paediatric syrups currently distributed in the local market. This research introduces a method for determining glycols utilizing gas chromatography-tandem mass spectrometry (GC-MS/MS), which offers significantly higher selectivity than conventional single quadrupole gas chromatography-mass spectrometry (GC-MS). The developed method meets the current International Council for Harmonisation (ICH) guidelines for validation. The absence of any interfering peaks in both the unspiked sample of promethazine syrup and the reference standard solutions proved the method's selectivity. Furthermore, 2,2,2-trichloroethanol was used as an internal standard, and a new GC-MS/MS method was developed to analyze it. The calibration curves for EG and DEG were linear within the selected concentration range of 1-10 µg/mL. The detection limit for both EG and DEG was 400 ng/mL, while the quantification limit was 1 µg/mL. Recovery values for both EG and DEG met the accuracy acceptance criterion. Thus, the developed method proved to be efficient and accurate for determining EG and DEG levels in suspected contaminated syrups.

3.
J Biomol Struct Dyn ; : 1-15, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38165437

ABSTRACT

Dihydrofolate reductase (DHFR) has gained significant attention in drug development, primarily due to marked distinctions in its active site among different species. DHFR plays a crucial role in both DNA and amino acid metabolism by facilitating the transfer of monocarbon residues through tetrahydrofolate, which is vital for nucleotide and amino acid synthesis. This considers its potential as a promising target for therapeutic interventions. In this study, our focus was on conducting a virtual screening of phytoconstituents from the IMPPAT2.0 database to identify potential inhibitors of DHFR. The initial criterion involved assessing the binding energy of molecules against DHFR and we screened top 20 compounds ranging energy -13.5 to -11.4 (kcal/Mol) while Pemetrexed disodium bound with less energy -10.2 (kcal/Mol), followed by an analysis of their interactions to identify more effective hits. We prioritized IMPHY007679 (Bismurrayaquinone-A), which displayed a high binding affinity and crucial interaction with DHFR. We also evaluated the drug-like properties and biological activity of IMPHY007679. Furthermore, MD simulation was done, RMSD, RMSF, Rg, SASA, PCA and FEL explore the time-evolution impact of IMPHY007679 comparing it with a reference drug, Pemetrexed disodium. Collectively, our findings suggest that IMPHY007679 recommend further investigation in both in vitro and in vivo settings for its potential in developing anticancer and antibacterial therapies. This compound holds promise as a valuable candidate for advancing drug research and treatment strategies.Communicated by Ramaswamy H. Sarma.

SELECTION OF CITATIONS
SEARCH DETAIL
...