Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37444832

ABSTRACT

In this study, we synthesized cobalt sulfide (CoS) nanostructures for supercapacitor applications via a one-step hydrothermal method. The effect of hydrothermal temperature on the synthesis process was investigated at temperatures ranging from 160 °C to 220 °C. The structural, morphological, and elemental analyses were performed using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM). The XRD patterns show the hexagonal phase of CoS, and the samples prepared at 200 °C have high crystallinity. The samples prepared at other temperatures show amorphousness at lower 2-theta angles. EDX indicated that the sample was of high purity, except that the sample prepared at 220 °C had an additional oxygen peak, indicating that sulfur is not stable at high temperatures. In addition, a cobalt oxide (CoO) peak is also observed in the XRD data of the sample prepared at 220 °C. SEM images show that the particles in the samples prepared at 160 °C and 180 °C are agglomerated due to the high surface energy, whereas the samples prepared at 200 °C and 220 °C have a distinct morphology. Electrochemical analyses such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge (GCD) were performed on all samples. The CoS sample prepared at 200 °C exhibited a high specific capacitance (Csp) of 1583 F/g at a current density of 1 A/g, with low resistivity and high cycling stability.

2.
Polymers (Basel) ; 15(10)2023 May 15.
Article in English | MEDLINE | ID: mdl-37242885

ABSTRACT

In the present research, groups of nanolayered structures and nanohybrids based on organic green dyes and inorganic species are designated to act as fillers for PVA to induce new optical sites and increase its thermal stability through producing polymeric nanocomposites. In this trend, different percentages of naphthol green B were intercalated as pillars inside the Zn-Al nanolayered structures to form green organic-inorganic nanohybrids. The two-dimensional green nanohybrids were identified by X-ray diffraction, TEM and SEM. According to the thermal analyses, the nanohybrid, which has the highest amount of green dyes, was used for modifying the PVA through two series. In the first series, three nanocomposites were prepared depending on the green nanohybrid as prepared. In the second series, the yellow nanohybrid, which was produced from the green nanohybrid by thermal treatment, was used to produce another three nanocomposites. The optical properties revealed that the polymeric nanocomposites depending on green nanohybrids became optical-active in UV and visible regions because the energy band gap decreased to 2.2 eV. In addition, the energy band gap of the nanocomposites which depended on yellow nanohybrids was 2.5 eV. The thermal analyses indicated that the polymeric nanocomposites are thermally more stable than that of the original PVA. Finally, the dual functionality of organic-inorganic nanohybrids that were produced from the confinement of organic dyes and the thermal stability of inorganic species converted the non-optical PVA to optical-active polymer in a wide range with high thermal stability.

3.
Molecules ; 28(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36838566

ABSTRACT

Moringa oleifera is rich in bioactive compounds such as beta-carotene, which have high nutritional values and antimicrobial applications. Several studies have confirmed that bioactive-compound-based herbal medicines extracted from the leaves, seeds, fruits and shoots of M. oleifera are vital to cure many diseases and infections, and for the healing of wounds. The ß-carotene is a naturally occurring bioactive compound encoded by zeta-carotene desaturase (ZDS) and phytoene synthase (PSY) genes. In the current study, computational analyses were performed to identify and characterize ZDS and PSY genes retrieved from Arabidopsis thaliana (as reference) and these were compared with the corresponding genes in M. oleifera, Brassica napus, Brassica rapa, Brassica oleracea and Bixa orellana. The BLAST results revealed that all the plant species considered in this study encode ß-carotene genes with 80-100% similarity. The Pfam analysis on ß-carotene genes of all the investigated plants confirmed that they belong to the same protein family and domain. Similarly, phylogenetic analysis revealed that ß-carotene genes of M. oleifera belong to the same ancestral class. Using the ZDS and PSY genes of Arabidopsis thaliana as a reference, we conducted qRT-PCR analysis on RNA extracted from the leaves of M. oleifera, Brassica napus, Brassica rapa and Bixa orellana. It was noted that the most significant gene expression occurred in the leaves of the studied medicinal plants. We concluded that not only are the leaves of M. oleifera an effective source of bioactive compounds including beta carotene, but also the leaves of Brassica napus, Brassica rapa and Bixa orellana can be employed as antibiotics and antioxidants against bacterial or microbial infections.


Subject(s)
Arabidopsis , Brassica napus , Brassica rapa , Moringa oleifera , Plants, Medicinal , beta Carotene , Moringa oleifera/genetics , Arabidopsis/genetics , Phylogeny , Brassica napus/genetics , Brassica rapa/genetics , Plants, Medicinal/genetics , Gene Expression Profiling , Plant Extracts , Plant Leaves
4.
Micromachines (Basel) ; 14(1)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36677253

ABSTRACT

Porous carbons are highly attractive and demanding materials which could be prepared using biomass waste; thus, they are promising for enhanced electrochemical capacitive performance in capacitors and cycling efficiency in Li-ion batteries. Herein, biomass (rice husk)-derived activated carbon was synthesized via a facile chemical route and used as anode materials for Li-ion batteries. Various characterization techniques were used to study the structural and morphological properties of the prepared activated carbon. The prepared activated carbon possessed a carbon structure with a certain degree of amorphousness. The morphology of the activated carbon was of spherical shape with a particle size of ~40-90 nm. Raman studies revealed the characteristic peaks of carbon present in the prepared activated carbon. The electrochemical studies evaluated for the fabricated coin cell with the activated carbon anode showed that the cell delivered a discharge capacity of ~321 mAhg-1 at a current density of 100 mAg-1 for the first cycle, and maintained a capacity of ~253 mAhg-1 for 400 cycles. The capacity retention was found to be higher (~81%) with 92.3% coulombic efficiency even after 400 cycles, which showed excellent cyclic reversibility and stability compared to commercial activated carbon. These results allow the waste biomass-derived anode to overcome the problem of cyclic stability and capacity performance. This study provides an insight for the fabrication of anodes from the rice husk which can be redirected into creating valuable renewable energy storage devices in the future, and the product could be a socially and ethically acceptable product.

5.
Molecules ; 28(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36677563

ABSTRACT

The doping of magnesium on lithium aluminium borate phosphor is reported in this study. A solid-state sintering technique was employed as the borate samples were synthesized. This report focuses on the structural, optical, thermoluminescence, and kinetic analyses of the main glow peak. The structural properties of lithium aluminium borates improved due to the magnesium dopants used. Differences in the crystallite size and particle size were 38.85-67.35 nm and 50-60 nm, respectively, and these results were obtained from the analyzed X-ray diffractogram and scanning electron spectroscopy. The energy band gaps obtained from the direct transition of borate phosphor materials were within the range of 3.00-4.40 eV, and the doped samples gave a higher energy band gap. A decrease in the TGA (%) exhibited a weight loss or water loss for the undoped, 0.1% Mg, and 0.3% Mg-doped lithium aluminium borate materials. The glow curve measured at a heat rate of 1 °C·s-1 after irradiation to 50 Gy revealed four peaks related to the magnesium doped lithium aluminium borate. The main glow peak was observed at 86 °C. Activation energy was extracted from the main glow peak by using kinetic analysis which involves the initial rise, deconvolution, and variable heating rate approach, and it was approximately 0.67 ± 0.03 eV. A shift in the main glow peak curve from 86 to 110 °C was recognized for the magnesium-doped lithium aluminium borate when it was irradiated from 1 to 300 Gy.

6.
Materials (Basel) ; 15(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36556695

ABSTRACT

ZnO nanostructures were grown on a Si(111) substrate using a vapor-liquid-solid (VLS) growth procedure (pristine ZnO) and annealed via a rapid thermal-annealing process in an argon atmosphere at 1100 °C (Ar-ZnO). The synthesized ZnO nanostructures were investigated through structural, electronic structural, morphological, optical, and magnetic characterizations. X-ray diffraction and selective area electron diffraction (SAED) measurements revealed that both samples exhibited the hexagonal wurtzite phase of nanocrystalline ZnO. Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy carried out at the O K-edge inferred the presence of the intrinsic-defect states. Field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy images displayed the formation of ZnO nanostructures. The photoluminescence (PL) spectra demonstrated an emission band in the UV region along with an additional defect band in the visible region. PL spectral analysis confirmed the presence of intrinsic defects in Ar-ZnO nanowires, contributing to the enhanced emission in the visible region. The Raman spectra showed the characteristic band (434 cm-1) corresponding to the vibrational modes of hexagonal wurtzite ZnO, with an additional band attributable to intrinsic defects. DC magnetization measurements showed a ferromagnetic response in both samples with enhanced coercivity in Ar-ZnO (~280 Oe). In brief, both samples exhibited the presence of intrinsic defects, which are found to be further enhanced in the case of Ar-ZnO. Therefore, it is suggested that intrinsic defects have played an important role in modifying the optical and magnetic properties of ZnO with enhanced results for Ar-ZnO.

7.
Front Chem ; 10: 1069450, 2022.
Article in English | MEDLINE | ID: mdl-36531331

ABSTRACT

Although, zinc oxide nanoparticles (ZRTs) as an anti-cancer agent have been the subject of numerous studies, none of the reports has investigated the impact of the reaction entry time of ion-carriers on the preparation of ZRTs. Therefore, we synthesized variants of ZRTs by extending the entry time of NaOH (that acts as a carrier of hydroxyl ions) in the reaction mixture. The anti-proliferative action, morphological changes, reactive oxygen species (ROS) production, and nuclear apoptosis of ZRTs on human A431 skin carcinoma cells were observed. The samples revealed crystallinity and purity by X-ray diffraction (XRD). Scanning electron microscopy (SEM) images of ZRT-1 (5 min ion carrier entry) and ZRT-2 (10 min ion carrier entry) revealed microtubule like morphology. On prolonging the entry time for ion carrier (NaOH) introduction in the reaction mixture, a relative ascent in the aspect ratio was seen. The typical ZnO band with a slight shift in the absorption maxima was evident with UV-visible spectroscopy. Both ZRT-1 and ZRT-2 exhibited non-toxic behavior as evident by RBC lysis assay. Additionally, ZRT-2 showed better anti-cancer potential against A431 cells as seen by MTT assay, ROS generation and chromatin condensation analyses. At 25 µM of ZRT-2, 5.56% cells were viable in MTT test, ROS production was enhanced to 166.71%, while 33.0% of apoptotic cells were observed. The IC50 for ZRT-2 was slightly lower (6 µM) than that for ZRT-1 (8 µM) against A431 cells. In conclusion, this paper presents a modest, economical procedure to generate ZRT nano-structures exhibiting strong cytotoxicity against the A431 cell line, indicating that ZRTs may have application in combating cancer.

8.
Materials (Basel) ; 15(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36431441

ABSTRACT

Magnetic nanostructures of CoFe2O4 were synthesized via a microwave-assisted hydrothermal route. The prepared nanostructures were investigated using X-ray diffraction (XRD), field emission electron microscopy (FE-SEM), energy dispersive X-ray (EDX) spectroscopy, high-resolution transmission electron microscopy (HR-TEM), selective area electron diffraction (SAED) pattern, DC magnetization, and dielectric spectroscopy measurements. The crystal structure studied using HR-TEM, SAED, and XRD patterns revealed that the synthesized nanostructures had a single-phase nature and ruled out the possibility of any secondary phase. The lattice parameters and unit cell volume determined from the XRD data were found to be 8.4821 Å and 583.88 Å3. The average crystallite size (~7.0 nm) was determined using Scherrer's equation. The FE-SEM and TEM micrographs revealed that the prepared nanostructures had a spherical shape morphology. The EDX results showed that the major elements present in the samples were Co, Fe, and O. The magnetization (M) versus temperature (T) measurements specified that the CoFe2O4 nanostructures showed ferromagnetic ordering at room temperature. The blocking temperature (TB) determined using the M-T curve was found to be 315 K. The magnetic hysteresis (M-H) loop of the CoFe2O4 nanostructures recorded at different temperatures showed the ferromagnetic behavior of the CoFe2O4 nanostructures at temperatures of 200 K and 300 K, and a superparamagnetic behavior at 350 K. The dielectric spectroscopy studies revealed a dielectric constant (ε') and loss tangent (tanδ) decrease with the increase in the frequency, as well as demonstrating a normal dispersion behavior, which is due to the Maxwell-Wagner type of interfacial polarization. The values of ε' and tanδ were observed to increase with the increase in the temperature.

9.
Materials (Basel) ; 15(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36431669

ABSTRACT

In the present work, Cu-doped ZnO nanostructures (Cu% = 0, 1, 5) have been prepared using microwave-assisted chemical route synthesis. The synthesized nanostructures were investigated through structural, morphological, optical, and magnetic characterizations. The results of the X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), and selective area electron diffraction (SAED) patterns confirmed that all of the samples exhibit the single-phase polycrystalline hexagonal crystal structure. The XRD results infer a decrease in the lattice parameters (a/c) by increasing the Cu% doping into ZnO. The field emission scanning electron microscopy (FE-SEM) and energy dispersive x-ray (EDX) spectroscopic measurements revealed the formation of nanostructures, showing the major elemental presence of Zn and O in the samples. The photoluminescence (PL) spectra exhibited photoemission in the UV and blue-green regions. With the increase in the Cu%, the photoemission in the UV region is reduced, while it is enhanced in the blue-green region. Raman spectra of the Cu-doped ZnO nanostructures displayed a blue shift of the E2High mode and an increase in the peak intensity of E1(LO), indicating the doping of Cu ion in the ZnO lattice. The dc magnetization measurements demonstrated the ferromagnetic behavior of all of the samples with an enhanced ferromagnetic character with increasing Cu%.

10.
Biosensors (Basel) ; 12(10)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36290993

ABSTRACT

Herein, we present an electrocatalyst constructed by zinc oxide hexagonal prisms/phosphorus-doped carbon nitride wrinkles (ZnO HPs/P-CN) prepared via a facile sonochemical method towards the detection of nitrofurantoin (NF). The ZnO HPs/P-CN-sensing platform showed amplified response and low-peak potential compared with other electrodes. The exceptional electrochemical performance could be credited to ideal architecture, rapid electron/charge transfer, good conductivity, and abundant active sites in the ZnO HPs/P-CN composite. Resulting from these merits, the ZnO HPs/P-CN-modified electrode delivered rapid response (2 s), a low detection limit (2 nM), good linear range (0.01-111 µM), high sensitivity (4.62 µA µM-1 cm2), better selectivity, decent stability (±97.6%), and reproducibility towards electrochemical detection of NF. We further demonstrated the feasibility of the proposed ZnO HPs/P-CN sensor for detecting NF in samples of water and human urine. All the above features make our proposed ZnO HPs/P-CN sensor a most promising probe for detecting NF in natural samples.


Subject(s)
Zinc Oxide , Humans , Zinc Oxide/chemistry , Electrochemical Techniques/methods , Nitrofurantoin , Phosphorus , Reproducibility of Results , Electrodes , Water , Carbon/chemistry
11.
Materials (Basel) ; 15(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36013781

ABSTRACT

We report a theoretical investigation of the influence of Cu doping into TiO2 with various concentrations on crystal structure, stability, electronic structures and optical absorption coefficient using density functional theory via the hybrid formalism based on Heyd Scuseria Ernzerhof. Our findings show that oxygen-rich environments are better for fabricating Cu-doped materials and that the energy of formation for Cu doping at the Ti site is lower than for Cu doping at the O site under these environments. It is found that Cu doping introduces intermediate bands into TiO2, narrowing the band gap. Optical absorption curves show that the Cu-doped TiO2 can successfully harvest visible light. The presence of widely intermediate bands above the valence-band edge could explain the increase in the visible light absorption range. However, the intensity of visible light absorption rises with the increase in doping concentration.

12.
RSC Adv ; 12(28): 18282-18295, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35800303

ABSTRACT

The present study describes a new strategy for modifying the structure of zinc oxide for removing colored pollutants from water after a few minutes of light irradiation. In this context, the magnetic nanocomposite was combined with the nanolayers of Al/Zn to build inorganic-magnetic nanohybrids. The long chains of hydrocarbons of stearic acid have been used as pillars to widen interlayered spacing among the nanolayers to build organic-magnetic-inorganic nanohybrids. These nanohybrids were used as sources for designing zinc oxide nanohybrids to purify water from the green dyes using UV-light. The optical measurements showed that the nanohybrid structure of zinc oxide led to a clear reduction in the band gap energy from 3.30 eV to 2.75 eV to be more effective. In addition, a complete removal of naphthol green B was achieved after 15 min in the presence of zinc oxide nanohybrid using UV-light. The kinetic study showed that the reaction rate for the photocatalytic degradation of the pollutants was faster than that of the conventional photocatalysts. Finally, this strategy for designing photoactive nanohybrids led to positive results for overcoming environment- and water-related problems using the fast technique for purifying water.

13.
Polymers (Basel) ; 14(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35808659

ABSTRACT

Nanocomposite (NC) films of polyvinyl alcohol (PVA), lignosulfonate (Lg), and nanosized palladium (Pd) were synthesized by ex-situ casting method. Samples from the synthesized PVA-Lg/Pd NC films were irradiated with 5-100 kGy γ doses. The effect of γ doses on the structural, thermal, and optical characteristics of the NC films were studied using different characterization techniques. The results indicated that the γ irradiation improves the decomposition temperature from 227 to 239 °C, signifying an increase in the thermal stability of the NC films. This was accompanied by a reduction of the melting temperature due to the increase of the amorphous phase. This can be attributed to the dominance of crosslinking. On the other hand, the refractive index increased from 2.21 to 2.32 while increasing the γ dose up to 100 kGy. This was associated with a reduction of the optical bandgap from 3.49 to 3.30 eV, which could be attributed to the increase in the amorphous phase as a result of crosslinking. This indicates an enhancement of the spreading of the NPs inside the blend matrix due to γ irradiation. This results in a more compacted construction of the PVA-Lg/Pd NC films. Furthermore, we used the Commission Internationale de E'Claire (CIE) method to estimate the change in color among the irradiated NC films and the pristine film. The PVA-Lg/Pd NC attained a significant color difference value greater than five, meaning permanent color changes.

14.
Materials (Basel) ; 15(13)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35806826

ABSTRACT

(Nb5+, Si4+) co-doped TiO2 (NSTO) ceramics with the compositions (Nb0.5Si0.5)xTi1−xO2, x = 0, 0.025, 0.050 and 0.1 were prepared with a solid-state reaction technique. X-ray diffraction (XRD) patterns and Raman spectra confirmed that the tetragonal rutile is the main phase in all the ceramics. Additionally, XRD revealed the presence of a secondary phase of SiO2 in the co-doped ceramics. Impedance spectroscopy analysis showed two contributions, which correspond to the responses of grain and grain-boundary. All the (Nb, Si) co-doped TiO2 showed improved dielectric performance in the high frequency range (>103 Hz). The sample (Nb0.5Si0.5)0.025Ti0.975O2 showed the best dielectric performance in terms of higher relative permittivity (5.5 × 104) and lower dielectric loss (0.18), at 10 kHz and 300 K, compared to pure TiO2 (1.1 × 103, 0.34). The colossal permittivity of NSTO ceramics is attributed to an internal barrier layer capacitance (IBLC) effect, formed by insulating grain-boundaries and semiconductor grains in the ceramics.

15.
Materials (Basel) ; 15(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35744177

ABSTRACT

BiFe1−xCrxO3, (0 ≤ x ≤ 10) nanoparticles were prepared through the sol−gel technique. The synthesized nanoparticles were characterized using various techniques, viz., X-ray diffraction, high-resolution field emission scanning electron microscopy (HRFESEM), energy dispersive spectroscopy (EDS), UV−Vis absorption spectroscopy, photoluminescence (PL), dc magnetization, near-edge X-ray absorption spectroscopy (NEXAFS) and cyclic voltammetry (CV) measurements, to investigate the structural, morphological, optical, magnetic and electrochemical properties. The structural analysis showed the formation of BiFeO3 with rhombohedral (R3c) as the primary phase and Bi25FeO39 as the secondary phase. The secondary phase percentage was found to reduce with increasing Cr content, along with reductions in crystallite sizes, lattice parameters and enhancement in strain. Nearly spherical shape morphology was observed via HRFESEM with Bi, Fe, Cr and O as the major contributing elements. The bandgap reduced from 1.91 to 1.74 eV with the increase in Cr concentration, and PL spectra revealed emissions in violet, blue and green regions. The investigation of magnetic field (H)-dependent magnetization (M) indicated a significant effect of Cr substitution on the magnetic properties of the nanoparticles. The ferromagnetic character of the samples was found to increase with the increase in the Cr concentration and the increase in the saturation magnetization. The Fe (+3/+4) was dissolved in mixed-valence states, as found through NEXAFS analysis. Electrochemical studies showed that 5%-Cr-doped BFO electrode demonstrated outstanding performance for supercapacitors through a specific capacitance of 421 F g−1 measured with a scan rate of 10 mV s−1. It also demonstrated remarkable cyclic stability through capacitance retention of >78% for 2000 cycles.

16.
Materials (Basel) ; 15(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35744178

ABSTRACT

The nanoparticles of CeO2, Ce0.98Fe0.02O2, and Ce0.78Fe0.02Cu0.20O2 were synthesized using the co-precipitation-synthesis technique. The effect of co-doping of Fe and Cu on structural, optical, and magnetic properties as well as specific capacitance have been studied using X-ray diffraction (XRD), scanning-electron microscopy (SEM), UV-visible spectroscopy, Raman spectroscopy, dc magnetization, and electrochemical measurements at room temperature. The results of the XRD analysis infer that all the samples have a single-phase nature and exclude the formation of any extra phase. Particle size has been found to reduce as a result of doping and co-doping. The smallest particle size was obtained to be 5.59 nm for Ce0.78Fe0.02Cu0.20O2. The particles show a spherical-shape morphology. Raman active modes, corresponding to CeO2, were observed in the Raman spectra, with noticeable shifting with doping and co-doping indicating the presence of defect states. The bandgap, calculated using UV-Vis spectroscopy, showed relatively low bandgap energy (1.7 eV). The dc magnetization results indicate the enhancement of the magnetic moment in the samples, with doping and co-doping. The highest value of saturation magnetization (1.3 × 10-2 emu/g) has been found for Ce0.78Fe0.02Cu0.20O2 nanoparticles. The electrochemical behavior studied using cyclic-voltammetry (CV) measurements showed that the Ce0.98Fe0.02O2 electrode exhibits superior-specific capacitance (~532 F g-1) along with capacitance retention of ~94% for 1000 cycles.

17.
Molecules ; 27(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35744799

ABSTRACT

Energy and water related problems have attracted strong attention from scientists across the world because of deficient energy and water pollution. Following this line, new strategy depended on preparing nanolayers of Al/Zn and magnetic nanoparticles of cobalt iron oxides nanocomposite in addition to long chains of hydrocarbons of stearic acid to be used as roofs, fillers and pillars; respectively, to design optical-active nanohybrids in sunlight for removing the colored pollutants from water in few minutes. By using long chains of hydrocarbons of stearic acid, X-ray diffraction (XRD) results and TEM images showed expansion of the interlayered spacing from 0.76 nm to 2.02 nm and insertion of magnetic nanoparticles among the nanolayers of Al/Zn. The optical properties and activities showed that the nanohybrid structure based on zinc oxide led to clear reduction of the band gap energy from 3.3 eV to 2.75 eV to be effective in sunlight. Photocatalytic degradation of the dye of acid green 1 confirmed the high activity of the prepared zinc oxide nanohybrids because of a complete removal of the dye after ten minutes in sunlight. Finally, this strategy was effective for producing photo-active nanohybrids for using renewable and non-polluting energy for purifying water.


Subject(s)
Nanocomposites , Zinc Oxide , Catalysis , Magnetics , Nanocomposites/chemistry , Sunlight , Water
18.
Nanomaterials (Basel) ; 12(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35745344

ABSTRACT

Water pollution and deficient energy are the main challenges for the scientific society across the world. In this trend, new approaches include designing zinc oxide nanohybrids to be very active in sunlight. In this line, organic and magnetic species intercalate among the nanolayers of Al/Zn to build inorganic-magnetic-organic nanohybrid structures. A series of nanolayered and nanohybrid structures have been prepared through intercalating very fine particles of cobalt iron oxide nanocomposites and long chains of organic fatty acids such as n-capric acid and stearic acid inside the nanolayered structures of Al/Zn. By thermal treatment, zinc oxide nanohybrids have been prepared and used for purifying water from colored pollutants using solar energy. The optical measurements have shown that the nanohybrid structure of zinc oxide leads to a clear reduction of band gap energy from 3.30 eV to 2.60 eV to be effective in sunlight. In this line, a complete removal of the colored pollutants (naphthol green B) was achieved after ten minutes in the presence of zinc oxide nanohybrid and sunlight. Finally, this new approach for designing photoactive nanohybrids leads to positive results for facing the energy- and water-related problems through using renewable and non-polluting energy for purifying water.

19.
Materials (Basel) ; 15(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35591505

ABSTRACT

In the current study, Bi2/3Cu3Ti4O12 (BCTO) ceramics were prepared by mechanical ball mill of the elemental oxides followed by conventional sintering of the powder without any pre-sintering heat treatments. The sintering temperature was in the range 950-990 °C, which is 100-150 °C lower than the previous conventional sintering studies on BCTO ceramics. All the ceramic samples showed body-centered cubic phase and grain size ≈ 2-6 µm. Sintering temperature in the range 950-975 °C resulted in comparatively lower dielectric loss and lower thermal coefficient of permittivity in the temperature range from -50 to 120 °C. All the BCTO ceramics showed reasonably high relative permittivity. The behavior of BCTO ceramics was correlated with the change in oxygen content in the samples with sintering temperature. This interpretation was supported by the measurements of the energy dispersive x-ray spectroscopy (EDS) elemental analysis and activation energy for conduction and for relaxation in the ceramics.

20.
Molecules ; 27(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35164042

ABSTRACT

In the current study, we report on the dielectric behavior of colossal-dielectric-constant Na1/2La1/2Cu3Ti4O12 (NLCTO) ceramics prepared by mechanochemical synthesis and spark plasma sintering (SPS) at 850 °C, 900 °C, and 925 °C for 10 min. X-ray powder diffraction analysis showed that all the ceramics have a cubic phase. Scanning electron microscope observations revealed an increase in the average grain size from 175 to 300 nm with an increase in the sintering temperature. SPS NLCTO ceramics showed a room-temperature colossal dielectric constant (>103) and a comparatively high dielectric loss (>0.1) over most of the studied frequency range (1 Hz-40 MHz). Two relaxation peaks were observed in the spectra of the electrical modulus and attributed to the response of grain and grain boundary. According to the Nyquist plots of complex impedance, the SPS NLCTO ceramics have semiconductor grains surrounded by electrically resistive grain boundaries. The colossal dielectric constant of SPS NLCTO ceramics was attributed to the internal barrier layer capacitance (IBLC) effect. The high dielectric loss is thought to be due to the low resistivity of the grain boundary of SPS NLCTO.

SELECTION OF CITATIONS
SEARCH DETAIL
...