Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Horiz ; 11(12): 2937-2949, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38572753

ABSTRACT

An organic photoelectrochemical transistor (OPECT) is an organic electrochemical transistor (OECT) that utilizes light to toggle between ON and OFF states. The current response to light and voltage fluxes in aqueous media renders the OPECT ideal for the development of next-generation bioelectronic devices, including light-assisted biosensors, light-controlled logic gates, and artificial photoreceptors. However, existing OPECT architectures are complex, often requiring photoactive nanostructures prepared through labor-intensive synthetic methods, and despite this complexity, their performance remains limited. In this study, we develop aqueous electrolyte-compatible optoelectronic transistors using a single n-type semiconducting polymer. The n-type film performs multiple tasks: (1) gating the channel, (2) generating a photovoltage in response to light, and (3) coupling and transporting cations and electrons in the channel. We systematically investigate the photoelectrochemical properties of a range of n-type polymeric mixed conductors to understand the material requirements for maximizing phototransistor performance. Our findings contribute to the identification of crucial material and device properties necessary for constructing high-performance OPECTs with simplified design features and a direct interface with biological systems.

3.
Small Methods ; 7(11): e2300476, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37661594

ABSTRACT

Organic semiconductors are a family of pi-conjugated compounds used in many applications, such as displays, bioelectronics, and thermoelectrics. However, their susceptibility to processing-induced contamination is not well understood. Here, it is shown that many organic electronic devices reported so far may have been unintentionally contaminated, thus affecting their performance, water uptake, and thin film properties. Nuclear magnetic resonance spectroscopy is used to detect and quantify contaminants originating from the glovebox atmosphere and common laboratory consumables used during device fabrication. Importantly, this in-depth understanding of the sources of contamination allows the establishment of clean fabrication protocols, and the fabrication of organic field effect transistors (OFETs) with improved performance and stability. This study highlights the role of unintentional contaminants in organic electronic devices, and demonstrates that certain stringent processing conditions need to be met to avoid scientific misinterpretation, ensure device reproducibility, and facilitate performance stability. The experimental procedures and conditions used herein are typical of those used by many groups in the field of solution-processed organic semiconductors. Therefore, the insights gained into the effects of contamination are likely to be broadly applicable to studies, not just of OFETs, but also of other devices based on these materials.

4.
Nat Commun ; 14(1): 3443, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37301872

ABSTRACT

Four solution-processable, linear conjugated polymers of intrinsic porosity are synthesised and tested for gas phase carbon dioxide photoreduction. The polymers' photoreduction efficiency is investigated as a function of their porosity, optical properties, energy levels and photoluminescence. All polymers successfully form carbon monoxide as the main product, without the addition of metal co-catalysts. The best performing single component polymer yields a rate of 66 µmol h-1 m-2, which we attribute to the polymer exhibiting macroporosity and the longest exciton lifetimes. The addition of copper iodide, as a source of a copper co-catalyst in the polymers shows an increase in rate, with the best performing polymer achieving a rate of 175 µmol h-1 m-2. The polymers are active for over 100 h under operating conditions. This work shows the potential of processable polymers of intrinsic porosity for use in the gas phase photoreduction of carbon dioxide towards solar fuels.


Subject(s)
Carbon Dioxide , Polymers , Copper , Carbon Monoxide , Porosity
5.
Angew Chem Int Ed Engl ; 61(7): e202113078, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-34797584

ABSTRACT

Three lactone-based rigid semiconducting polymers were designed to overcome major limitations in the development of n-type organic thermoelectrics, namely electrical conductivity and air stability. Experimental and theoretical investigations demonstrated that increasing the lactone group density by increasing the benzene content from 0 % benzene (P-0), to 50 % (P-50), and 75 % (P-75) resulted in progressively larger electron affinities (up to 4.37 eV), suggesting a more favorable doping process, when employing (N-DMBI) as the dopant. Larger polaron delocalization was also evident, due to the more planarized conformation, which is proposed to lead to a lower hopping energy barrier. As a consequence, the electrical conductivity increased by three orders of magnitude, to achieve values of up to 12 S cm and Power factors of 13.2 µWm-1  K-2 were thereby enabled. These findings present new insights into material design guidelines for the future development of air stable n-type organic thermoelectrics.

6.
J Am Chem Soc ; 143(29): 11007-11018, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34192463

ABSTRACT

Novel p-type semiconducting polymers that can facilitate ion penetration, and operate in accumulation mode are much desired in bioelectronics. Glycol side chains have proven to be an efficient method to increase bulk electrochemical doping and optimize aqueous swelling. One early polymer which exemplifies these design approaches was p(g2T-TT), employing a bithiophene-co-thienothiophene backbone with glycol side chains in the 3,3' positions of the bithiophene repeat unit. In this paper, the analogous regioisomeric polymer, namely pgBTTT, was synthesized by relocating the glycol side chains position on the bithiophene unit of p(g2T-TT) from the 3,3' to the 4,4' positions and compared with the original p(g2T-TT). By changing the regio-positioning of the side chains, the planarizing effects of the S-O interactions were redistributed along the backbone, and the influence on the polymer's microstructure organization was investigated using grazing-incidence wide-angle X-ray scattering (GIWAXS) measurements. The newly designed pgBTTT exhibited lower backbone disorder, closer π-stacking, and higher scattering intensity in both the in-plane and out-of-plane GIWAXS measurements. The effect of the improved planarity of pgBTTT manifested as higher hole mobility (µ) of 3.44 ± 0.13 cm2 V-1 s-1. Scanning tunneling microscopy (STM) was in agreement with the GIWAXS measurements and demonstrated, for the first time, that glycol side chains can also facilitate intermolecular interdigitation analogous to that of pBTTT. Electrochemical quartz crystal microbalance with dissipation of energy (eQCM-D) measurements revealed that pgBTTT maintains a more rigid structure than p(g2T-TT) during doping, minimizing molecular packing disruption and maintaining higher hole mobility in operation mode.


Subject(s)
Electrochemical Techniques , Ethylenes/chemistry , Glycols/chemistry , Polymers/chemical synthesis , Thiophenes/chemical synthesis , Molecular Conformation , Polymers/chemistry , Stereoisomerism , Thiophenes/chemistry
7.
J Am Chem Soc ; 143(1): 260-268, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33350307

ABSTRACT

Three n-type fused lactam semiconducting polymers were synthesized for thermoelectric and transistor applications via a cheap, highly atom-efficient, and nontoxic transition-metal free aldol polycondensation. Energy level analysis of the three polymers demonstrated that reducing the central acene core size from two anthracenes (A-A), to mixed naphthalene-anthracene (A-N), and two naphthalene cores (N-N) resulted in progressively larger electron affinities, thereby suggesting an increasingly more favorable and efficient solution doping process when employing 4-(2,3-dihydro-1,3-dimethyl-1H-benzimidazol-2-yl)-N,N-dimethylbenzenamine (N-DMBI) as the dopant. Meanwhile, organic field effect transistor (OFET) mobility data showed the N-N and A-N polymers to feature the highest charge carrier mobilities, further highlighting the benefits of aryl core contraction to the electronic performance of the materials. Ultimately, the combination of these two factors resulted in N-N, A-N, and A-A to display power factors (PFs) of 3.2 µW m-1 K-2, 1.6 µW m-1 K-2, and 0.3 µW m-1 K-2, respectively, when doped with N-DMBI, whereby the PFs recorded for N-N and A-N are among the highest reported in the literature for n-type polymers. Importantly, the results reported in this study highlight that modulating the size of the central acene ring is a highly effective molecular design strategy to optimize the thermoelectric performance of conjugated polymers, thus also providing new insights into the molecular design guidelines for the next generation of high-performance n-type materials for thermoelectric applications.

8.
Angew Chem Int Ed Engl ; 60(17): 9368-9373, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33368944

ABSTRACT

N-type conjugated polymers as the semiconducting component of organic electrochemical transistors (OECTs) are still undeveloped with respect to their p-type counterparts. Herein, we report two rigid n-type conjugated polymers bearing oligo(ethylene glycol) (OEG) side chains, PgNaN and PgNgN, which demonstrated an essentially torsion-free π-conjugated backbone. The planarity and electron-deficient rigid structures enable the resulting polymers to achieve high electron mobility in an OECT device of up to the 10-3  cm2 V-1 s-1 range, with a deep-lying LUMO energy level lower than -4.0 eV. Prominently, the polymers exhibited a high device performance with a maximum dimensionally normalized transconductance of 0.212 S cm-1 and the product of charge-carrier mobility µ and volumetric capacitance C* of 0.662±0.113 F cm-1 V-1 s-1 , which are among the highest in n-type conjugated polymers reported to date. Moreover, the polymers are synthesized via a metal-free aldol-condensation polymerization, which is beneficial to their application in bioelectronics.

9.
Angew Chem Int Ed Engl ; 57(40): 13046-13051, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29974577

ABSTRACT

Complexes made by hosts that completely surround their guests provide a means to stabilize reactive chemical intermediates, transfer biologically active cargo to a diseased cell, and construct molecular-scale devices. By the virtue of inorganic host-guest self-assembly, nucleation processes in the cavity of a {P8 W48 }-archetype phosphotungstate has afforded a nanoscale 16-AlIII -32-oxo cluster and its GaIII analogue that contain the largest number of AlIII /GaIII ions yet found in polyoxometalate (POM) chemistry. Interestingly, the rich Lewis acid AlIII centers within the Lewis base POM support shows an exceptional proton conductivity of 4.5×10-2  S cm-1 (85 °C, 70 % RH; RH: relative humidity), which is by far the highest conductivity reported among POM-based single-crystal proton conductors.

SELECTION OF CITATIONS
SEARCH DETAIL
...