ABSTRACT
BACKGROUND: In Grade C periodontitis in young patients (PerioC-Y), the functional roles of the subgingival community after years of periodontal treatment are still underexplored. This study evaluated the taxonomic and predicted functional content of the subgingival microbiome of PerioC-Y patients under supportive periodontal therapy (SPT). METHODS: Clinical and microbiological data from subgingival biofilm were assessed from 10 PerioC-Y patients at two time points: at baseline and after 5.7 ± 1.3 years of SPT. This was compared with 15 patients without a history of periodontitis. The V1-V3 and V4-V5 regions of the 16S rRNA were sequenced using the Illumina Miseq. Microbial composition was evaluated by the core microbiome, and alpha- and beta-diversity. The microbiome functional content was predicted using Picrust2, and the gene differential abundance was analyzed with DESeq2. RESULTS: Clinical improvements were seen in PerioC-Y-SPT. Differences in ß-diversity between PerioC-Y and health were observed (health x PerioC-Y-baseline, P = 0.02; health x PerioC-Y-SPT, P = 0.05). Moreover, although ß-diversity did not statistically change between baseline and SPT in PerioC-Y, the microbial correlation evidenced increased Streptococcus and decreased Treponema network contributions during SPT. Based on predicted functional data, treatment induced a reduction in genes related to flagellar protein and signal transduction in PerioC-Y. However, compared with healthy individuals, some genes remained more highly abundant in PerioC-Y-SPT, such as quorum sensing and efflux pump transporters. CONCLUSION: Despite clinical improvements and a shift in taxonomic composition, the PerioC-Y patients' periodontal treatment was not enough to reach a similar microbiome to patients without disease experience. Some functional content in this biofilm remained altered in PerioC-Y regardless of disease control.
Subject(s)
Microbiota , Periodontitis , Biofilms , High-Throughput Nucleotide Sequencing , Humans , Microbiota/genetics , Periodontitis/microbiology , RNA, Ribosomal, 16S/geneticsABSTRACT
BACKGROUND: The current pandemic has raised awareness of aerosol dispersion in dental offices. This scoping review was conducted to assess the amount and spread of aerosol generated by dental procedures. METHODS: This scoping review followed the PRISMA-ScR protocol and was conducted by searching multiple databases adopting a core search structure for each database. Detailed eligibility criteria were applied. The authors placed no restrictions on study design, year of publication, and study location. The literature search was updated on September 15, 2021. RESULTS: A total of 51 papers were included in this scoping review. The risk of bias assessment was not conducted as per guidelines. The majority of studies found microorganisms, bloodstains, splatters of aerosol, and particles in the air part of the search strategy. Publication dates ranged from 1969 to 2021. Data came from different dental settings locations. Several factors were identified that have an effect on the amount and spread of the aerosol and spatter. CONCLUSION: Although it is clear that the microbial contamination occurred mainly during aerosol-generating dental procedures, our understanding of the contamination level, spread, and half-life are limited.
Subject(s)
Pandemics , AerosolsABSTRACT
Early acquisition of a pathogenic microbiota and the presence of dysbiosis in childhood is associated with susceptibility to and the familial aggregation of periodontitis. This longitudinal interventional case-control study aimed to evaluate the impact of parental periodontal disease on the acquisition of oral pathogens in their offspring. Subgingival plaque and clinical periodontal metrics were collected from 18 parents with a history of generalized aggressive periodontitis and their children (6-12 years of age), and 18 periodontally healthy parents and their parents at baseline and following professional oral prophylaxis. 16S rRNA amplicon sequencing revealed that parents were the primary source of the child's microbiome, affecting their microbial acquisition and diversity. Children of periodontitis parents were preferentially colonized by Filifactor alocis, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Streptococcus parasanguinis, Fusobacterium nucleatum and several species belonging to the genus Selenomonas even in the absence of periodontitis, and these species controlled inter-bacterial interactions. These pathogens also emerged as robust discriminators of the microbial signatures of children of parents with periodontitis. Plaque control did not modulate this pathogenic pattern, attesting to the microbiome's resistance to change once it has been established. This study highlights the critical role played by parental disease in microbial colonization patterns in their offspring and the early acquisition of periodontitis-related species and underscores the need for greater surveillance and preventive measures in families of periodontitis patients.