Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585906

ABSTRACT

Teredinibacter turnerae is a cultivable cellulolytic Gammaproeteobacterium (Cellvibrionaceae) that commonly occurs as an intracellular endosymbiont in the gills of wood-eating bivalves of the family Teredinidae (shipworms). The genome of T. turnerae encodes a broad range of enzymes that deconstruct cellulose, hemicellulose, and pectin and contribute to lignocellulose digestion in the shipworm gut. However, the mechanism by which symbiont-made enzymes are secreted by T. turnerae and subsequently transported to the site of lignocellulose digestion in the shipworm gut is incompletely understood. Here, we show that T. turnerae cultures grown on carboxymethyl cellulose (CMC) produce outer membrane vesicles (OMVs) that contain a variety of proteins identified by LC-MS/MS as carbohydrate-active enzymes with predicted activities against cellulose, hemicellulose, and pectin. Reducing sugar assays and zymography confirm that these OMVs retain cellulolytic activity, as evidenced by hydrolysis of CMC. Additionally, these OMVs were enriched with TonB-dependent receptors, which are essential to carbohydrate and iron acquisition by free-living bacteria. These observations suggest potential roles for OMVs in lignocellulose utilization by T. turnerae in the free-living state, in enzyme transport and host interaction during symbiotic association, and in commercial applications such as lignocellulosic biomass conversion.

2.
Proc Biol Sci ; 289(1986): 20221478, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36350208

ABSTRACT

Shipworms (Bivalvia, Teredinidae) are the principal consumers of wood in marine environments. Like most wood-eating organisms, they digest wood with the aid of cellulolytic enzymes supplied by symbiotic bacteria. However, in shipworms the symbiotic bacteria are not found in the digestive system. Instead, they are located intracellularly in the gland of Deshayes, a specialized tissue found within the gills. It has been independently demonstrated that symbiont-encoded cellulolytic enzymes are present in the digestive systems and gills of two shipworm species, Bankia setacea and Lyrodus pedicellatus, confirming that these enzymes are transported from the gills to the lumen of the gut. However, the mechanism of enzyme transport from gill to gut remains incompletely understood. Recently, a mechanism was proposed by which enzymes are transported within bacterial cells that are expelled from the gill and transported to the mouth by ciliary action of the branchial or food grooves. Here we use in situ immunohistochemical methods to provide evidence for a different mechanism in the shipworm B. setacea, in which cellulolytic enzymes are transported via the ducts of Deshayes, enigmatic structures first described 174 years ago, but whose function have remained unexplained.


Subject(s)
Bivalvia , Cellulases , Animals , Gills , Phylogeny , Symbiosis , Bivalvia/microbiology , Bacteria
3.
Genome Biol Evol ; 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35714221

ABSTRACT

The bivalve families Teredinidae and Xylophagaidae include voracious consumers of wood in shallow and deep-water marine environments, respectively. The taxa are sister clades whose members consume wood as food with the aid of intracellular cellulolytic endosymbionts housed in their gills. This combination of adaptations is found in no other group of animals and was likely present in the common ancestor of both families. Despite these commonalities, the two families have followed dramatically different evolutionary paths with respect to anatomy, life history and distribution. Here we present 42 new mitochondrial genome sequences from Teredinidae and Xylophagaidae and show that distinct trajectories have also occurred in the evolution and organization of their mitochondrial genomes. Teredinidae display significantly greater rates of amino acid substitution but absolute conservation of protein-coding gene order, whereas Xylophagaidae display significantly less amino acid change but have undergone numerous and diverse changes in genome organization since their divergence from a common ancestor. As with many bivalves, these mitochondrial genomes encode two ribosomal RNAs, 12 protein coding genes, and 22 tRNAs; atp8 was not detected. We further show that their phylogeny, as inferred from amino acid sequences of 12 concatenated mitochondrial protein-coding genes, is largely congruent with those inferred from their nuclear genomes based on 18S and 28S ribosomal RNA sequences. Our results provide a robust phylogenetic framework to explore the tempo and mode of mitochondrial genome evolution and offer directions for future phylogenetic and taxonomic studies of wood-boring bivalves.

4.
Appl Environ Microbiol ; 88(11): e0027022, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35611654

ABSTRACT

Bacterial symbionts often provide critical functions for their hosts. For example, wood-boring bivalves called shipworms rely on cellulolytic endosymbionts for wood digestion. However, how the relationship between shipworms and their bacterial symbionts is formed and maintained remains unknown. Quorum sensing (QS) often plays an important role in regulating symbiotic relationships. We identified and characterized a QS system found in Teredinibacter sp. strain 2052S, a gill isolate of the wood-boring shipworm Bactronophorus cf. thoracites. We determined that 2052S produces the signal N-decanoyl-l-homoserine lactone (C10-HSL) and that this signal controls the activation of a biosynthetic gene cluster colocated in the symbiont genome that is conserved among all symbiotic Teredinibacter isolates. We subsequently identified extracellular metabolites associated with the QS regulon, including ones linked to the conserved biosynthetic gene cluster, using mass spectrometry-based molecular networking. Our results demonstrate that QS plays an important role in regulating secondary metabolism in this shipworm symbiont. This information provides a step toward deciphering the molecular details of the relationship between these symbionts and their hosts. Furthermore, because shipworm symbionts harbor vast yet underexplored biosynthetic potential, understanding how their secondary metabolism is regulated may aid future drug discovery efforts using these organisms. IMPORTANCE Bacteria play important roles as symbionts in animals ranging from invertebrates to humans. Despite this recognized importance, much is still unknown about the molecular details of how these relationships are formed and maintained. One of the proposed roles of shipworm symbionts is the production of bioactive secondary metabolites due to the immense biosynthetic potential found in shipworm symbiont genomes. Here, we report that a shipworm symbiont uses quorum sensing to coordinate activation of its extracellular secondary metabolism, including the transcriptional activation of a biosynthetic gene cluster that is conserved among many shipworm symbionts. This work is a first step toward linking quorum sensing, secondary metabolism, and symbiosis in wood-boring shipworms.


Subject(s)
Bivalvia , Gammaproteobacteria , Animals , Bacteria/genetics , Bivalvia/microbiology , Gammaproteobacteria/genetics , Multigene Family , Phylogeny , Quorum Sensing , Symbiosis
6.
Article in English | MEDLINE | ID: mdl-33439117

ABSTRACT

Here, we describe three endosymbiotic bacterial strains isolated from the gills of the shipworm, Bankia setacea (Teredinidae: Bivalvia). These strains, designated as Bs08T, Bs12T and Bsc2T, are Gram-stain-negative, microaerobic, gammaproteobacteria that grow on cellulose and a variety of substrates derived from lignocellulose. Phenotypic characterization, phylogeny based on 16S rRNA gene and whole genome sequence data, amino acid identity and percentage of conserved proteins analyses, show that these strains are novel and may be assigned to the genus Teredinibacter. The three strains may be differentiated and distinguished from other previously described Teredinibacter species based on a combination of four characteristics: colony colour (Bs12T, purple; others beige to brown), marine salt requirement (Bs12T, Bsc2T and Teredinibacter turnerae strains), the capacity for nitrogen fixation (Bs08T and T. turnerae strains) and the ability to respire nitrate (Bs08T). Based on these findings, we propose the names Teredinibacter haidensis sp. nov. (type strain Bs08T=ATCC TSD-121T=KCTC 62964T), Teredinibacter purpureus sp. nov. (type strain Bs12T=ATCC TSD-122T=KCTC 62965T) and Teredinibacter franksiae sp. nov. (type strain Bsc2T=ATCC TSD-123T=KCTC 62966T).


Subject(s)
Bivalvia/microbiology , Gammaproteobacteria/classification , Gills/microbiology , Phylogeny , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Gammaproteobacteria/isolation & purification , Nitrogen Fixation , Pacific Ocean , Pigmentation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Washington , Wood
7.
mSystems ; 5(3)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32606027

ABSTRACT

Shipworms play critical roles in recycling wood in the sea. Symbiotic bacteria supply enzymes that the organisms need for nutrition and wood degradation. Some of these bacteria have been grown in pure culture and have the capacity to make many secondary metabolites. However, little is known about whether such secondary metabolite pathways are represented in the symbiont communities within their hosts. In addition, little has been reported about the patterns of host-symbiont co-occurrence. Here, we collected shipworms from the United States, the Philippines, and Brazil and cultivated symbiotic bacteria from their gills. We analyzed sequences from 22 shipworm gill metagenomes from seven shipworm species and from 23 cultivated symbiont isolates. Using (meta)genome sequencing, we demonstrate that the cultivated isolates represent all the major bacterial symbiont species and strains in shipworm gills. We show that the bacterial symbionts are distributed among shipworm hosts in consistent, predictable patterns. The symbiotic bacteria harbor many gene cluster families (GCFs) for biosynthesis of bioactive secondary metabolites, only <5% of which match previously described biosynthetic pathways. Because we were able to cultivate the symbionts and to sequence their genomes, we can definitively enumerate the biosynthetic pathways in these symbiont communities, showing that ∼150 of ∼200 total biosynthetic gene clusters (BGCs) present in the animal gill metagenomes are represented in our culture collection. Shipworm symbionts occur in suites that differ predictably across a wide taxonomic and geographic range of host species and collectively constitute an immense resource for the discovery of new biosynthetic pathways corresponding to bioactive secondary metabolites.IMPORTANCE We define a system in which the major symbionts that are important to host biology and to the production of secondary metabolites can be cultivated. We show that symbiotic bacteria that are critical to host nutrition and lifestyle also have an immense capacity to produce a multitude of diverse and likely novel bioactive secondary metabolites that could lead to the discovery of drugs and that these pathways are found within shipworm gills. We propose that, by shaping associated microbial communities within the host, the compounds support the ability of shipworms to degrade wood in marine environments. Because these symbionts can be cultivated and genetically manipulated, they provide a powerful model for understanding how secondary metabolism impacts microbial symbiosis.

8.
Int J Syst Evol Microbiol ; 70(4): 2388-2394, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32100688

ABSTRACT

A cellulolytic, aerobic, gammaproteobacterium, designated strain Bs02T, was isolated from the gills of a marine wood-boring mollusc, Bankia setacea (Bivalvia: Teredinidae). The cells are Gram-stain-negative, slightly curved motile rods (2-5×0.4-0.6 µm) that bear a single polar flagellum and are capable of heterotrophic growth in a simple mineral medium supplemented with cellulose as a sole source of carbon and energy. Cellulose, carboxymethylcellulose, xylan, cellobiose and a variety of sugars also support growth. Strain Bs02T requires combined nitrogen for growth. Temperature, pH and salinity optima (range) for growth were 20 °C (range, 10-30 °C), 8.0 (pH 6.5-8.5) and 0.5 M NaCl (range, 0.0-0.8 M), respectively when grown on 0.5 % (w/v) galactose. Strain Bs02T does not require magnesium and calcium ion concentrations reflecting the proportions found in seawater. The genome size is approximately 4.03 Mbp and the DNA G+C content of the genome is 47.8 mol%. Phylogenetic analyses based on 16S rRNA gene sequences, and on conserved protein-coding sequences, show that strain Bs02T forms a well-supported clade with Teredinibacter turnerae. Average nucleotide identity and percentage of conserved proteins differentiate strain Bs02T from Teredinibacter turnerae at threshold values exceeding those proposed to distinguish bacterial species but not genera. These results indicate that strain Bs02T represents a novel species in the previously monotypic genus Teredinibacter for which the name Teredinibacter waterburyi sp. nov. is proposed. The strain has been deposited under accession numbers ATCC TSD-120T and KCTC 62963T.


Subject(s)
Bivalvia/microbiology , Gammaproteobacteria/classification , Gills/microbiology , Phylogeny , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Gammaproteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Wood
9.
Proc Biol Sci ; 286(1905): 20190434, 2019 06 26.
Article in English | MEDLINE | ID: mdl-31213180

ABSTRACT

Shipworms are a group of wood-boring and wood-feeding bivalves of extraordinary economic, ecological and historical importance. Known in the literature since the fourth century BC, shipworms are both destructive pests and critical providers of ecosystem services. All previously described shipworms are obligate wood-borers, completing all or part of their life cycle in wood and most are thought to use wood as a primary source of nutrition. Here, we report and describe a new anatomically and morphologically divergent species of shipworm that bores in carbonate limestone rather than in woody substrates and lacks adaptations associated with wood-boring and wood digestion. The species is highly unusual in that it bores by ingesting rock and is among the very few known freshwater rock-boring macrobioeroders. The calcareous burrow linings of this species resemble fossil borings normally associated with bivalve bioerosion of wood substrates (ichnospecies Teredolites longissimus) in marginal and fully marine settings. The occurrence of this newly recognized shipworm in a lithic substrate has implications for teredinid phylogeny and evolution, and interpreting palaeoenvironmental conditions based on fossil bioerosion features.


Subject(s)
Bivalvia/physiology , Animals , Ecosystem , Fresh Water , Philippines , Wood
10.
PeerJ ; 7: e6256, 2019.
Article in English | MEDLINE | ID: mdl-30746304

ABSTRACT

Here we describe an anatomically divergent wood-boring bivalve belonging to the family Teredinidae. Specimens were collected off the coast of Mabini, Batangas, Philippines, in February 2018, from sunken driftwood at a depth of less than 2 m. A combination of characteristics differentiates these specimens from members of previously named teredinid genera and species. Most notable among these include: an enlarged cephalic hood which extends across the posterior slope of the shell valves and integrates into the posterior adductor muscle; a unique structure, which we term the 'cephalic collar', formed by protruding folds of the mantle immediately ventral to the foot and extending past the posterior margin of the valves; a large globular stomach located entirely posterior to the posterior adductor muscle and extending substantially beyond the posterior gape of the valves; an elongate crystalline style and style sac extending from the base of the foot, past the posterior adductor muscle, to the posteriorly located stomach; calcareous pallets distinct from those of described genera; a prominently flared mantle collar which extends midway along the stalk of the pallets; and, separated siphons that bear a pigmented pinstripe pattern with highly elaborate compound papillae on the incurrent siphon aperture. We used Micro-Computed Tomography (Micro-CT) to build a virtual 3D anatomical model of this organism, confirming the spatial arrangement of the structures described above. Phylogenetic analysis of the small (18S) and large (28S) nuclear rRNA gene sequences, place this bivalve within the Teredindae on a branch well differentiated from previously named genera and species. We propose the new genus and species Tamilokus mabinia to accommodate these organisms, raising the total number of genera in this economically and environmentally important family to 17. This study demonstrates the efficacy of Micro-CT for anatomical description of a systematically challenging group of bivalves whose highly derived body plans are differentiated predominantly by soft tissue adaptations rather than features of calcareous hard-parts.

11.
Int J Syst Evol Microbiol ; 69(3): 638-644, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30540238

ABSTRACT

A chemolithoautotrophic sulfur-oxidizing, diazotrophic, facultatively heterotrophic, endosymbiotic bacterium, designated as strain 2141T, was isolated from the gills of the giant shipworm Kuphus polythalamius (Teredinidae: Bivalvia). Based on its 16S rRNA sequence, the endosymbiont falls within a clade that includes the as-yet-uncultivated thioautotrophic symbionts of a marine ciliate and hydrothermal vent gastropods, uncultivated marine sediment bacteria, and a free-living sulfur-oxidizing bacterium ODIII6, all of which belong to the Gammaproteobacteria. The endosymbiont is Gram-negative, rod-shaped and has a single polar flagellum when grown in culture. This bacterium can be grown chemolithoautotrophically on a chemically defined medium supplemented with either hydrogen sulfide, thiosulfate, tetrathionate or elemental sulfur. The closed-circular genome has a DNA G+C content of 60.1 mol% and is 4.79 Mbp in size with a large nitrogenase cluster spanning nearly 40 kbp. The diazotrophic capability was confirmed by growing the strain on chemolithoautotrophic thiosulfate-based medium without a combined source of fixed nitrogen. The bacterium is also capable of heterotrophic growth on organic acids such as acetate and propionate. The pH, temperature and salinity optima for chemolithoautotrophic growth on thiosulfate were found to be 8.5, 34 °C and 0.2 M NaCl, respectively. To our knowledge, this is the first report of pure culture of a thioautotrophic animal symbiont. The type strain of Thiosocius teredinicola is PMS-2141T.STBD.0c.01aT (=DSM 108030T).


Subject(s)
Bivalvia/microbiology , Gammaproteobacteria/classification , Gills/microbiology , Phylogeny , Animals , Bacterial Typing Techniques , Base Composition , Chemoautotrophic Growth , DNA, Bacterial/genetics , Fatty Acids/chemistry , Gammaproteobacteria/isolation & purification , Geologic Sediments/microbiology , Oxidation-Reduction , Philippines , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sulfur/metabolism , Thiosulfates
12.
Biol Bull ; 235(3): 167-177, 2018 12.
Article in English | MEDLINE | ID: mdl-30624120

ABSTRACT

Kuphus polythalamius (Teredinidae) is one of the world's largest, most rarely observed, and least understood bivalves. Kuphus polythalamius is also among the few shallow-water marine species and the only teredinid species determined to harbor sulfur-oxidizing chemoautotrophic (thioautotrophic) symbionts. Until the recent discovery of living specimens in the Philippines, this species was known only from calcareous hard parts, fossils, and the preserved soft tissues of a single large specimen. As a result, the anatomy, biology, life history, and geographic range of K. polythalamius remain obscure. Here we report the collection and description of the smallest living specimens of K. polythalamius yet discovered and confirm the species identity of these individuals by using sequences of three genetic markers. Unlike previously collected specimens, all of which have been reported to occur in marine sediments, these specimens were observed burrowing in wood, the same substrate utilized by all other members of the family. These observations suggest that K. polythalamius initially settles on wood and subsequently transitions into sediment, where this species may grow to enormous sizes. This discovery led us to search for and find previously unidentified and misidentified wood-boring specimens of this species within museum collections, and it allowed us to show that the recent geographic range (since 1933) of this species extends across a 3000-mile span from the Philippines to Papua New Guinea and the Solomon Islands.


Subject(s)
Animal Distribution , Bivalvia/physiology , Animals , Chemoautotrophic Growth , Pacific Ocean , Symbiosis
13.
Proc Natl Acad Sci U S A ; 114(18): E3652-E3658, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28416684

ABSTRACT

The "wooden-steps" hypothesis [Distel DL, et al. (2000) Nature 403:725-726] proposed that large chemosynthetic mussels found at deep-sea hydrothermal vents descend from much smaller species associated with sunken wood and other organic deposits, and that the endosymbionts of these progenitors made use of hydrogen sulfide from biogenic sources (e.g., decaying wood) rather than from vent fluids. Here, we show that wood has served not only as a stepping stone between habitats but also as a bridge between heterotrophic and chemoautotrophic symbiosis for the giant mud-boring bivalve Kuphus polythalamia This rare and enigmatic species, which achieves the greatest length of any extant bivalve, is the only described member of the wood-boring bivalve family Teredinidae (shipworms) that burrows in marine sediments rather than wood. We show that K. polythalamia harbors sulfur-oxidizing chemoautotrophic (thioautotrophic) bacteria instead of the cellulolytic symbionts that allow other shipworm species to consume wood as food. The characteristics of its symbionts, its phylogenetic position within Teredinidae, the reduction of its digestive system by comparison with other family members, and the loss of morphological features associated with wood digestion indicate that K. polythalamia is a chemoautotrophic bivalve descended from wood-feeding (xylotrophic) ancestors. This is an example in which a chemoautotrophic endosymbiosis arose by displacement of an ancestral heterotrophic symbiosis and a report of pure culture of a thioautotrophic endosymbiont.


Subject(s)
Bacteria/metabolism , Bivalvia/microbiology , Chemoautotrophic Growth/physiology , Symbiosis/physiology , Wood/metabolism , Animals , Wood/microbiology
14.
Proc Natl Acad Sci U S A ; 111(47): E5096-104, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25385629

ABSTRACT

Bacteria play many important roles in animal digestive systems, including the provision of enzymes critical to digestion. Typically, complex communities of bacteria reside in the gut lumen in direct contact with the ingested materials they help to digest. Here, we demonstrate a previously undescribed digestive strategy in the wood-eating marine bivalve Bankia setacea, wherein digestive bacteria are housed in a location remote from the gut. These bivalves, commonly known as shipworms, lack a resident microbiota in the gut compartment where wood is digested but harbor endosymbiotic bacteria within specialized cells in their gills. We show that this comparatively simple bacterial community produces wood-degrading enzymes that are selectively translocated from gill to gut. These enzymes, which include just a small subset of the predicted wood-degrading enzymes encoded in the endosymbiont genomes, accumulate in the gut to the near exclusion of other endosymbiont-made proteins. This strategy of remote enzyme production provides the shipworm with a mechanism to capture liberated sugars from wood without competition from an endogenous gut microbiota. Because only those proteins required for wood digestion are translocated to the gut, this newly described system reveals which of many possible enzymes and enzyme combinations are minimally required for wood degradation. Thus, although it has historically had negative impacts on human welfare, the shipworm digestive process now has the potential to have a positive impact on industries that convert wood and other plant biomass to renewable fuels, fine chemicals, food, feeds, textiles, and paper products.


Subject(s)
Bacteria/classification , Digestion , Feeding Behavior , Gills/microbiology , Mollusca/metabolism , Wood , Animals , Metagenome , Molecular Sequence Data , Phylogeny
15.
Mol Ecol ; 23(6): 1418-1432, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24765662

ABSTRACT

Teredinibacter turnerae is a cultivable intracellular endosymbiont of xylotrophic (woodfeeding)bivalves of the Family Teredinidae (shipworms). Although T. turnerae has been isolated from many shipworm taxa collected in many locations, no systematic effort has been made to explore genetic diversity within this symbiont species across the taxonomic and geographical range of its hosts. The mode of symbiont transmission is unknown. Here, we examine sequence diversity in fragments of six genes (16S rRNA, gyrB, sseA, recA, rpoB and celAB) among 25 isolates of T. turnerae cultured from 13 shipworm species collected in 15 locations in the Atlantic, Pacific and Indian Oceans. While 16S rRNA sequences are nearly invariant between all examined isolates (maximum pairwise difference <0.26%), variation between examined protein-coding loci is greater (mean pairwise difference 2.2­5.9%). Phylogenetic analyses based on each protein-coding locus differentiate the 25 isolates into two distinct and well-supported clades. With five exceptions, clade assignments for each isolate were supported by analysis of alleles of each of the five protein-coding loci. These exceptions include (i) putative recombinant alleles of the celAB and gyrB loci in two isolates (PMS-535T.S.1b.3 and T8510), suggesting homologous recombination between members of the two clades; and (ii) evidence for a putative lateral gene transfer event affecting a second locus (recA) in three isolates (T8412, T8503 and T8513). These results demonstrate that T. turnerae isolates do not represent a homogeneous global population. Instead, they indicate the emergence of two lineages that, although distinct, likely experience some level of genetic exchange with each other and with other bacterial species.


Subject(s)
Bivalvia/microbiology , Gammaproteobacteria/classification , Phylogeny , Symbiosis , Animals , Atlantic Ocean , DNA, Bacterial/genetics , Gammaproteobacteria/genetics , Gammaproteobacteria/isolation & purification , Genes, Bacterial , Genetic Variation , Indian Ocean , Pacific Ocean , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...