Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Nature ; 511(7507): 61-4, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24930767

ABSTRACT

An outstanding problem in the field of high-transition-temperature (high-Tc) superconductivity is the identification of the normal state out of which superconductivity emerges in the mysterious underdoped regime. The normal state uncomplicated by thermal fluctuations can be studied using applied magnetic fields that are sufficiently strong to suppress long-range superconductivity at low temperatures. Proposals in which the normal ground state is characterized by small Fermi surface pockets that exist in the absence of symmetry breaking have been superseded by models based on the existence of a superlattice that breaks the translational symmetry of the underlying lattice. Recently, a charge superlattice model that positions a small electron-like Fermi pocket in the vicinity of the nodes (where the superconducting gap is minimum) has been proposed as a replacement for the prevalent superlattice models that position the Fermi pocket in the vicinity of the pseudogap at the antinodes (where the superconducting gap is maximum). Although some ingredients of symmetry breaking have been recently revealed by crystallographic studies, their relevance to the electronic structure remains unresolved. Here we report angle-resolved quantum oscillation measurements in the underdoped copper oxide YBa2Cu3O6 + x. These measurements reveal a normal ground state comprising electron-like Fermi surface pockets located in the vicinity of the nodes, and also point to an underlying superlattice structure of low frequency and long wavelength with features in common with the charge order identified recently by complementary spectroscopic techniques.

2.
Rev Sci Instrum ; 83(9): 096102, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23020430

ABSTRACT

We present a new technique to perform radio frequency (rf) contactless conductivity measurements in pulsed magnetic fields to probe different ground states in condensed matter physics. The new method utilizes a simple analog band-stop filter circuit implemented in a radio frequency transmission setup to perform contactless conductivity measurements. The new method is more sensitive than the other methods (e.g., the tunnel diode oscillator and the proximity detector oscillator) due to more sensitive dependence of the circuit resonance frequency on the tank circuit inductance (not the transmission line). More important, the new method is more robust than other methods when used to perform measurements in very high magnetic fields, works for a wide range of temperatures (i.e., 300 K-1.4 K) and is less sensitive to noise and mechanical vibrations during pulse magnet operation. The new technique was successfully applied to measure the Shubnikov-de Haas effect in Bi(2)Se(3) in pulsed magnetic fields of up to 60 T.

3.
Phys Rev Lett ; 109(3): 037201, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22861888

ABSTRACT

We present magnetization and magnetostriction studies of LaCoO3 in magnetic fields approaching 100 T. In contrast with expectations from single-ion models, the data reveal two distinct first-order transitions and well-defined magnetization plateaus. The magnetization at the higher plateau is only about half the saturation value expected for spin-1 Co3+ ions. These findings strongly suggest collective behavior induced by interactions between different electronic configurations of Co3+ ions. We propose a model that predicts crystalline spin textures and a cascade of four magnetic phase transitions at high fields, of which the first two account for the experimental data.

4.
Phys Rev Lett ; 108(6): 066407, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22401097

ABSTRACT

We report magnetic field orientation-dependent measurements of the superconducting upper critical field in high quality single crystals of URu(2)Si(2) and find the effective g factor estimated from the Pauli limit to agree remarkably well with that found in quantum oscillation experiments, both quantitatively and in the extreme anisotropy (≈10(3)) of the spin susceptibility. Rather than a strictly itinerant or purely local f-electron picture being applicable, the latter suggests the quasiparticles subject to pairing in URu(2)Si(2) to be "composite heavy fermions" formed from bound states between conduction electrons and local moments with a protected Ising behavior. Non-Kramers doublet local magnetic degrees of freedom suggested by the extreme anisotropy favor a local pairing mechanism.

5.
J Phys Condens Matter ; 24(5): 052206, 2012 Feb 08.
Article in English | MEDLINE | ID: mdl-22194040

ABSTRACT

The physical properties of the first In analog of the PuMGa(5) (M = Co, Rh) family of superconductors, PuCoIn(5), are reported. With its unit cell volume being 28% larger than that of PuCoGa(5), the characteristic spin-fluctuation energy scale of PuCoIn(5) is three to four times smaller than that of PuCoGa(5), which suggests that the Pu 5f electrons are in a more localized state relative to PuCoGa(5). This raises the possibility that the high superconducting transition temperature T(c) = 18.5 K of PuCoGa(5) stems from the proximity to a valence instability, while the superconductivity at T(c) = 2.5 K of PuCoIn(5) is mediated by antiferromagnetic spin fluctuations associated with a quantum critical point.


Subject(s)
Chemistry, Physical/methods , Cobalt/chemistry , Electrons , Gallium/chemistry , Indium/chemistry , Plutonium/chemistry , Electric Conductivity , Hot Temperature , Ions , Magnetics , Models, Statistical , Pressure , Temperature , Transition Temperature
6.
Nat Commun ; 2: 471, 2011 Sep 13.
Article in English | MEDLINE | ID: mdl-21915113

ABSTRACT

The electronic structure of the normal state of the underdoped cuprates has thus far remained mysterious, with neither the momentum space location nor the charge carrier type of constituent small Fermi surface pockets being resolved. Whereas quantum oscillations have been interpreted in terms of a nodal-antinodal Fermi surface including electrons at the antinodes, photoemission indicates a solely nodal density-of-states at the Fermi level. Here we examine both these possibilities using extended quantum oscillation measurements. Second harmonic quantum oscillations in underdoped YBa2Cu3O(6+x) are shown to arise chiefly from oscillations in the chemical potential. We show from the relationship between the phase and amplitude of the second harmonic with that of the fundamental quantum oscillations that there exists a single carrier Fermi surface pocket, likely located at the nodal region of the Brillouin zone, with the observed multiple frequencies arising from warping, bilayer splitting and magnetic breakdown.

7.
Phys Rev Lett ; 106(14): 146403, 2011 Apr 08.
Article in English | MEDLINE | ID: mdl-21561207

ABSTRACT

Using Shubnikov-de Haas oscillations measured in URu2Si2 over a broad range in a magnetic field of 11-45 T, we find a cascade of field-induced Fermi surface changes within the hidden order phase I and further signatures of oscillations within field-induced phases III and V [previously discovered by Kim et al., [Phys. Rev. Lett. 91, 256401 (2003)]. A comparison of kinetic and Zeeman energies indicates a pocket-by-pocket polarization of the Fermi surface leading up to the destruction of the hidden order phase I at ≈35 T. The anisotropy of the Zeeman energy driving the transitions in URu2Si2 points to an itinerant hidden order parameter involving quasiparticles whose spin degrees of freedom depart significantly from those of free electrons.

8.
Proc Natl Acad Sci U S A ; 107(14): 6175-9, 2010 Apr 06.
Article in English | MEDLINE | ID: mdl-20304800

ABSTRACT

An enduring question in correlated systems concerns whether superconductivity is favored at a quantum critical point (QCP) characterized by a divergent quasiparticle effective mass. Despite such a scenario being widely postulated in high T(c) cuprates and invoked to explain non-Fermi liquid transport signatures, experimental evidence is lacking for a critical divergence under the superconducting dome. We use ultrastrong magnetic fields to measure quantum oscillations in underdoped YBa(2)Cu(3)O(6+x), revealing a dramatic doping-dependent upturn in quasiparticle effective mass at a critical metal-insulator transition beneath the superconducting dome. Given the location of this QCP under a plateau in T(c) in addition to a postulated QCP at optimal doping, we discuss the intriguing possibility of two intersecting superconducting subdomes, each centered at a critical Fermi surface instability.

9.
Rev Sci Instrum ; 80(6): 066104, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19566232

ABSTRACT

A radio frequency oscillator circuit based on a proximity detector integrated circuit is described as an alternative for the traditional tunnel diode oscillator used for pulsed magnetic field measurements at low temperatures. The proximity detector circuit design, although less sensitive than tunnel diode oscillator circuits, has a number of essential advantages for measurements in the extreme environments of pulsed magnetic fields. These include the insensitivity of operation to voltages induced in the inductor coil, the elimination of a diode bias circuit and tuning, and a broad dynamic range of resonant frequency variation. The circuit has been successfully applied to measure the superconducting upper critical field in Ba(0.55)K(0.45)Fe2As2 single crystals up to 60 T.

SELECTION OF CITATIONS
SEARCH DETAIL