Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37961438

ABSTRACT

Breast cancer is the most commonly diagnosed malignancy and the major leading cause of tumor-related deaths in women. It is estimated that the majority of breast tumor-related deaths are a consequence of metastasis, to which no cure exists at present. The FAK family proteins Proline-rich tyrosine kinase (PYK2) and focal adhesion kinase (FAK) are highly expressed in breast cancer, but the exact cellular and signaling mechanisms by which they regulate in vivo tumor cell invasiveness and consequent metastatic dissemination are mostly unknown. Using a PYK2 and FAK knockdown xenograft model we show here, for the first time, that ablation of either PYK2 or FAK decreases primary tumor size and significantly reduces Tumor MicroEnvironment of Metastasis (TMEM) doorway activation, leading to decreased intravasation and reduced spontaneous lung metastasis. Intravital imaging analysis further demonstrates that PYK2, but not FAK, regulates a motility phenotype switch between focal adhesion-mediated fast motility and invadopodia-dependent, ECM-degradation associated slow motility within the primary tumor. Furthermore, we validate our in vivo and intravital imaging results with integrated transcriptomic and proteomic data analysis from xenograft knockdown tumors and reveal new and distinct pathways by which these two homologous kinases regulate breast tumor cell invasiveness and consequent metastatic dissemination. Our findings identify PYK2 and FAK as novel mediators of mammary tumor progression and metastasis and as candidate therapeutic targets for breast cancer metastasis.

2.
Microbiol Spectr ; 11(3): e0501822, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37039649

ABSTRACT

Enveloped RNA viruses are rare among plant viruses. Fimoviridae is a newly founded family of plant viruses within the Bunyavirales order that inflicts diverse crop losses worldwide. The fig mosaic virus (FMV), the representative member of the Fimoviridae family, was shown to be a causative agent for the fig mosaic disease. Like all bunyaviruses, FMV has a segmented, negative-sense, single-stranded RNA (ssRNA) genome that is encapsulated by the viral nucleoprotein (N). Here, we present high-resolution crystal structures of FMV N in its RNA-free and RNA-bound forms, revealing a "paper fortune teller" structural transition between the two states. The tightly packed tetramer of FNV N is similar to the structures of other N proteins of different members of the Bunyavirales order. In its RNA-bound form, the tetramer reorganizes to adopt a more open state that allows the accommodation of the RNA. Despite the low sequence similarity to N proteins of animal-infecting bunyaviruses, there is a striking structural resemblance between FMV N and nucleoproteins from members of the Peribunyaviridae, an animal-infecting family of viruses. This structural homology implies that enveloped plant viruses and animal-infecting viruses might have a common ancestor from which they diverged. IMPORTANCE Most insect-born viruses circulate within the Animalia kingdom, whereas plant-infecting RNA viruses are cross-kingdom pathogens. Many plant-infecting viruses cause devastating crop damage that leads to food security endangerment. The evolutionary crossroads of interkingdom circulation and infection are poorly understood. Thus, we took the structural approach to understand the similarities and differences between interkingdom-infecting viruses and viruses that circulate within one kingdom of life. Using our structures of FMV N in its free form and in complex with a single-stranded RNA (ssRNA), we dissected the mechanism by which FMV N binds to the RNA and revealed the conformational changes associated with the binding. The resemblance of our structure to N proteins from members of the Peribunyaviridae family and their recently published ribonucleoprotein (RNP) pseudoatomic resolution assembly model suggests that the FMV genome is similarly encapsulated. Thus, our finding unveils yet another bridge by which plant- and animal-infecting viruses are interconnected.


Subject(s)
RNA Viruses , RNA , Animals , Nucleoproteins/genetics , RNA Viruses/genetics , Biological Evolution , Plants/genetics
3.
Microbiol Spectr ; 10(6): e0115022, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36314945

ABSTRACT

Recent studies suggest the enhancement of liver injury in COVID-19 patients infected with Hepatitis C virus (HCV). Hepatocytes express low levels of angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor, raising the possibility of HCV-SARS-CoV-2 coinfection in the liver. This work aimed to explore whether HCV and SARS-CoV-2 coinfect hepatocytes and the interplay between these viruses. We demonstrate that SARS-CoV-2 coinfects HCV-infected Huh7.5 (Huh7.5HCV) cells. Both viruses replicated efficiently in the coinfected cells, with HCV replication enhanced in coinfected compared to HCV-mono-infected cells. Strikingly, Huh7.5HCV cells were eight fold more susceptible to SARS-CoV-2 pseudoviruses than naive Huh7.5 cells, suggesting enhanced SARS-CoV-2 entry into HCV-preinfected hepatocytes. In addition, we observed increased binding of spike receptor-binding domain (RBD) protein to Huh7.5HCV cells, as well as enhanced cell-to-cell fusion of Huh7.5HCV cells with spike-expressing Huh7.5 cells. We explored the mechanism of enhanced SARS-CoV-2 entry and identified an increased ACE2 mRNA and protein levels in Huh7.5HCV cells, primary hepatocytes, and in data from infected liver biopsies obtained from database. Importantly, higher expression of ACE2 increased HCV infection by enhancing its binding to the host cell, underscoring its role in the HCV life cycle as well. Transcriptome analysis revealed that shared host signaling pathways were induced in HCV-SARS-CoV-2 coinfection. This study revealed complex interactions between HCV and SARS-CoV-2 infections in hepatocytes, which may lead to the increased liver damage recently reported in HCV-positive COVID-19 patients. IMPORTANCE Here, we provide the first experimental evidence for the coexistence of SARS-CoV-2 infection with HCV, and the interplay between them. The study revealed a complex relationship of enhancement between the two viruses, where HCV infection increased the expression of the SARS-CoV-2 entry receptor ACE2, thus facilitating SARS-CoV-2 entry, and potentially, also HCV entry. Thereafter, SARS-CoV-2 infection enhanced HCV replication in hepatocytes. This study may explain the aggravation of liver damage that was recently reported in COVID-19 patients with HCV coinfection and suggests preinfection with HCV as a risk factor for severe COVID-19. Moreover, it highlights the possible importance of HCV treatment for coinfected patients. In a broader view, these findings emphasize the importance of identifying coinfecting pathogens that increase the risk of SARS-CoV-2 infection and that may accelerate COVID-19-related co-morbidities.


Subject(s)
COVID-19 , Coinfection , Hepatitis C , Humans , SARS-CoV-2/metabolism , Hepacivirus , Angiotensin-Converting Enzyme 2/metabolism , Receptors, Virus/genetics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Hepatitis C/complications , Hepatocytes , Protein Binding
4.
Commun Biol ; 5(1): 789, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35931732

ABSTRACT

As new variants of SARS-CoV-2 continue to emerge, it is important to assess the cross-neutralizing capabilities of antibodies naturally elicited during wild type SARS-CoV-2 infection. In the present study, we evaluate the activity of nine anti-SARS-CoV-2 monoclonal antibodies (mAbs), previously isolated from convalescent donors infected with the Wuhan-Hu-1 strain, against the SARS-CoV-2 variants of concern (VOC) Alpha, Beta, Gamma, Delta and Omicron. By testing an array of mutated spike receptor binding domain (RBD) proteins, cell-expressed spike proteins from VOCs, and neutralization of SARS-CoV-2 VOCs as pseudoviruses, or as the authentic viruses in culture, we show that mAbs directed against the ACE2 binding site (ACE2bs) are more sensitive to viral evolution compared to anti-RBD non-ACE2bs mAbs, two of which retain their potency against all VOCs tested. At the second part of our study, we reveal the neutralization mechanisms at high molecular resolution of two anti-SARS-CoV-2 neutralizing mAbs by structural characterization. We solve the structures of the Delta-neutralizing ACE2bs mAb TAU-2303 with the SARS-CoV-2 spike trimer and RBD at 4.5 Å and 2.42 Å resolutions, respectively, revealing a similar mode of binding to that between the RBD and ACE2. Furthermore, we provide five additional structures (at resolutions of 4.7 Å, 7.3 Å, 6.4 Å, 3.3 Å, and 6.1 Å) of a second antibody, TAU-2212, complexed with the SARS-CoV-2 spike trimer. TAU-2212 binds an exclusively quaternary epitope, and exhibits a unique, flexible mode of neutralization that involves transitioning between five different conformations, with both arms of the antibody recruited for cross linking intra- and inter-spike RBD subunits. Our study provides additional mechanistic understanding about how antibodies neutralize SARS-CoV-2 and its emerging variants and provides insights on the likelihood of reinfections.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal/chemistry , Antibodies, Viral , Humans , Neutralization Tests , Spike Glycoprotein, Coronavirus/chemistry
5.
Vaccines (Basel) ; 10(8)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35893835

ABSTRACT

Patients with inflammatory bowel disease (IBD) treated with anti-tumor-necrosis factor-alpha (TNFα) exhibited lower serologic responses one-month following the second dose of the COVID-19 BNT162b2 vaccine compared to those not treated with anti-TNFα (non-anti-TNFα) or to healthy controls (HCs). We comprehensively analyzed long-term humoral responses, including anti-spike (S) antibodies, serum inhibition, neutralization, cross-reactivity and circulating B cell six months post BNT162b2, in patients with IBD stratified by therapy compared to HCs. Subjects enrolled in a prospective, controlled, multi-center Israeli study received two BNT162b2 doses. Anti-S levels, functional activity, specific B cells, antigen cross-reactivity, anti-nucleocapsid levels, adverse events and IBD disease score were detected longitudinally. In total, 240 subjects, 151 with IBD (94 not treated with anti-TNFα and 57 treated with anti-TNFα) and 89 HCs participated. Six months after vaccination, patients with IBD treated with anti-TNFα had significantly impaired BNT162b2 responses, specifically, more seronegativity, decreased specific circulating B cells and cross-reactivity compared to patients untreated with anti-TNFα. Importantly, all seronegative subjects were patients with IBD; of those, >90% were treated with anti-TNFα. Finally, IBD activity was unaffected by BNT162b2. Altogether these data support the earlier booster dose administration in these patients.

6.
Gastroenterology ; 162(2): 454-467, 2022 02.
Article in English | MEDLINE | ID: mdl-34717923

ABSTRACT

BACKGROUND & AIM: Patients with inflammatory bowel diseases (IBD), specifically those treated with anti-tumor necrosis factor (TNF)α biologics, are at high risk for vaccine-preventable infections. Their ability to mount adequate vaccine responses is unclear. The aim of the study was to assess serologic responses to messenger RNA-Coronavirus Disease 2019 vaccine, and safety profile, in patients with IBD stratified according to therapy, compared with healthy controls (HCs). METHODS: Prospective, controlled, multicenter Israeli study. Subjects enrolled received 2 BNT162b2 (Pfizer/BioNTech) doses. Anti-spike antibody levels and functional activity, anti-TNFα levels and adverse events (AEs) were detected longitudinally. RESULTS: Overall, 258 subjects: 185 IBD (67 treated with anti-TNFα, 118 non-anti-TNFα), and 73 HCs. After the first vaccine dose, all HCs were seropositive, whereas ∼7% of patients with IBD, regardless of treatment, remained seronegative. After the second dose, all subjects were seropositive, however anti-spike levels were significantly lower in anti-TNFα treated compared with non-anti-TNFα treated patients, and HCs (both P < .001). Neutralizing and inhibitory functions were both lower in anti-TNFα treated compared with non-anti-TNFα treated patients, and HCs (P < .03; P < .0001, respectively). Anti-TNFα drug levels and vaccine responses did not affect anti-spike levels. Infection rate (∼2%) and AEs were comparable in all groups. IBD activity was unaffected by BNT162b2. CONCLUSIONS: In this prospective study in patients with IBD stratified according to treatment, all patients mounted serologic response to 2 doses of BNT162b2; however, its magnitude was significantly lower in patients treated with anti-TNFα, regardless of administration timing and drug levels. Vaccine was safe. As vaccine serologic response longevity in this group may be limited, vaccine booster dose should be considered.


Subject(s)
BNT162 Vaccine/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine/drug effects , Inflammatory Bowel Diseases/immunology , Tumor Necrosis Factor Inhibitors/immunology , Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , Case-Control Studies , Female , Humans , Inflammatory Bowel Diseases/drug therapy , Israel , Male , Middle Aged , Prospective Studies , SARS-CoV-2/immunology
7.
Talanta ; 239: 123147, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34920254

ABSTRACT

The COVID-19 pandemic has highlighted the need for reliable and accurate diagnostic tools that provide quantitative results at the point of care. Real-time RT-PCR requires large laboratories, a skilled workforce, complex and costly equipment, and labor-intensive sample processing. Despite tremendous efforts, scaling up RT-PCR tests is seemingly unattainable. To date, hundreds of millions of COVID-19 tests have been performed globally, but the demand for timely, accurate testing continues to outstrip supply. Antigen-based rapid diagnostic testing is emerging as an alternative to RT-PCR. However, the performance of these tests, namely their sensitivity, is still inadequate. To overcome the limitations of currently employed diagnostic tests, new tools that are both sensitive and scalable are urgently needed. We have developed a miniaturized electrochemical biosensor based on the integration of specific monoclonal antibodies with a biochip and a measurement platform, and applied it in the detection of Spike S1 protein, the binding protein of SARS-CoV-2. Using electrochemical impedance spectroscopy, quantitative detection of sub-nanomolar concentrations of Spike S1 was demonstrated, exhibiting a broad detection range. To demonstrate the applicability of the biosensor, we have further developed a SARS-CoV-2 pseudovirus based on Spike protein-pseudo-typed VSV platform. Specific detection of different concentrations of pseudovirus particles was feasible in <30 min. This new tool may largely contribute to the fight against COVID-19 by enabling intensive testing to be performed and alleviating most of the hurdles that plague current diagnostics.


Subject(s)
COVID-19 , Vesicular Stomatitis , Animals , Diagnostic Tests, Routine , Humans , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
8.
Nat Commun ; 12(1): 6222, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711825

ABSTRACT

The importance of breastmilk in postnatal life lies in the strong association between breastfeeding and the reduction in the risk of infection and infection-related infant mortality. However, data regarding the induction and dynamics of breastmilk antibodies following administration of the Pfizer-BioNTech BNT162b2 COVID-19 mRNA vaccine is scarce, as pregnant and lactating women were not included in the initial vaccine clinical trials. Here, we investigate the dynamics of the vaccine-specific antibody response in breastmilk and serum in a prospective cohort of ten lactating women who received two doses of the mRNA vaccine. We show that the antibody response is rapid and highly synchronized between breastmilk and serum, reaching stabilization 14 days after the second dose. The response in breastmilk includes both IgG and IgA with neutralization capacity.


Subject(s)
Breast Feeding , COVID-19 Vaccines/genetics , RNA, Messenger/blood , Adult , Animals , Antibody Formation/genetics , Antibody Formation/physiology , BNT162 Vaccine , Female , Humans , Milk/chemistry , RNA, Messenger/analysis , Vaccines, Synthetic/therapeutic use , mRNA Vaccines
9.
PLoS Pathog ; 17(2): e1009165, 2021 02.
Article in English | MEDLINE | ID: mdl-33571304

ABSTRACT

The interactions between antibodies, SARS-CoV-2 and immune cells contribute to the pathogenesis of COVID-19 and protective immunity. To understand the differences between antibody responses in mild versus severe cases of COVID-19, we analyzed the B cell responses in patients 1.5 months post SARS-CoV-2 infection. Severe, and not mild, infection correlated with high titers of IgG against Spike receptor binding domain (RBD) that were capable of ACE2:RBD inhibition. B cell receptor (BCR) sequencing revealed that VH3-53 was enriched during severe infection. Of the 22 antibodies cloned from two severe donors, six exhibited potent neutralization against authentic SARS-CoV-2, and inhibited syncytia formation. Using peptide libraries, competition ELISA and mutagenesis of RBD, we mapped the epitopes of the neutralizing antibodies (nAbs) to three different sites on the Spike. Finally, we used combinations of nAbs targeting different immune-sites to efficiently block SARS-CoV-2 infection. Analysis of 49 healthy BCR repertoires revealed that the nAbs germline VHJH precursors comprise up to 2.7% of all VHJHs. We demonstrate that severe COVID-19 is associated with unique BCR signatures and multi-clonal neutralizing responses that are relatively frequent in the population. Moreover, our data support the use of combination antibody therapy to prevent and treat COVID-19.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Convalescence , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Adult , Aged , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , COVID-19/genetics , COVID-19/immunology , Chlorocebus aethiops , Cloning, Molecular , Epitope Mapping , Epitopes/genetics , Epitopes/immunology , Female , Humans , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
10.
Environ Chem Lett ; 19(2): 1779-1785, 2021.
Article in English | MEDLINE | ID: mdl-33462542

ABSTRACT

The COVID-19 pandemic has severely impacted public health worldwide. Evidence of SARS-CoV-2 transmission via aerosols and surfaces has highlighted the need for efficient indoor disinfection methods. For instance, the use of ozone gas as a safe and potent disinfectant against SARS-CoV-2 virus is of particular interest. Here we tested the use of pseudoviruses as a model for evaluating ozone disinfection of the coronavirus at ozone concentrations of 30, 100, and 1000 ppmv. Results show that ozone disinfection rate of pseudoviruses was similar to that of coronavirus 229E (HuCoV-229E) at short contact times, below 30 min. Viral infection decreased by 95% following ozone exposure for 20 min at 1000 ppmv, 30 min at 100 ppmv and about 40 min at 30 ppmv. This findings mean that ozone is a powerful disinfectant toward the enveloped pseudovirus even at low ozone exposure. We also showed that viral disinfection occurs on various contaminated surfaces, with a positive association between disinfection and surface hydrophilicity. Infected surfaces made of aluminum alloy, for example, were better disinfected with ozone as compared to brass, copper, and nickel surfaces. Lastly, we demonstrate the advantage of ozone over liquid disinfectants by showing similar viral disinfection on top, side, bottom, and interior surfaces. Overall, our study demonstrates the potential use of ozone gas disinfection to combat the COVID-19 outbreak.

11.
Proc Natl Acad Sci U S A ; 117(42): 26237-26244, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33020295

ABSTRACT

Tospoviridae is a family of enveloped RNA plant viruses that infect many field crops, inflicting a heavy global economic burden. These tripartite, single-stranded, negative-sense RNA viruses are transmitted from plant to plant by thrips as the insect vector. The medium (M) segment of the viral genome encodes two envelope glycoproteins, GN and GC, which together form the envelope spikes. GC is considered the virus fusogen, while the accompanying GN protein serves as an attachment protein that binds to a yet unknown receptor, mediating the virus acquisition by the thrips carrier. Here we present the crystal structure of glycoprotein N (GN) from the tomato spotted wilt virus (TSWV), a representative member of the Tospoviridae family. The structure suggests that GN is organized as dimers on TSWV's outer shell. Our structural data also suggest that this dimerization is required for maintaining GN structural integrity. Although the structure of the TSWV GN is different from other bunyavirus GN proteins, they all share similar domain connectivity that resembles glycoproteins from unrelated animal-infecting viruses, suggesting a common ancestor for these accompanying proteins.


Subject(s)
Evolution, Molecular , Glycoproteins/chemistry , Insect Vectors/virology , Protein Multimerization , Solanum lycopersicum/virology , Tospovirus/metabolism , Viral Proteins/chemistry , Animals , Crystallography, X-Ray , Glycoproteins/metabolism , Models, Molecular , Protein Conformation , Tospovirus/genetics , Tospovirus/growth & development , Viral Proteins/metabolism
12.
bioRxiv ; 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33052341

ABSTRACT

The interactions between antibodies, SARS-CoV-2 and immune cells contribute to the pathogenesis of COVID-19 and protective immunity. To understand the differences between antibody responses in mild versus severe cases of COVID-19, we analyzed the B cell responses in patients 1.5 months post SARS-CoV-2 infection. Severe and not mild infection correlated with high titers of IgG against Spike receptor binding domain (RBD) that were capable of viral inhibition. B cell receptor (BCR) sequencing revealed two VH genes, VH3-38 and VH3-53, that were enriched during severe infection. Of the 22 antibodies cloned from two severe donors, six exhibited potent neutralization against live SARS-CoV-2, and inhibited syncytia formation. Using peptide libraries, competition ELISA and RBD mutagenesis, we mapped the epitopes of the neutralizing antibodies (nAbs) to three different sites on the Spike. Finally, we used combinations of nAbs targeting different immune-sites to efficiently block SARS-CoV-2 infection. Analysis of 49 healthy BCR repertoires revealed that the nAbs germline VHJH precursors comprise up to 2.7% of all VHJHs. We demonstrate that severe COVID-19 is associated with unique BCR signatures and multi-clonal neutralizing responses that are relatively frequent in the population. Moreover, our data support the use of combination antibody therapy to prevent and treat COVID-19.

13.
Oncotarget ; 9(31): 22158-22183, 2018 Apr 24.
Article in English | MEDLINE | ID: mdl-29774130

ABSTRACT

Metastatic dissemination of cancer cells from the primary tumor and their spread to distant sites in the body is the leading cause of mortality in breast cancer patients. While researchers have identified treatments that shrink or slow metastatic tumors, no treatment that permanently eradicates metastasis exists at present. Here, we show that the ABL kinase inhibitors imatinib, nilotinib, and GNF-5 impede invadopodium precursor formation and cortactin-phosphorylation dependent invadopodium maturation, leading to decreased actin polymerization in invadopodia, reduced extracellular matrix degradation, and impaired matrix proteolysis-dependent invasion. Using a mouse xenograft model we demonstrate that, while primary tumor size is not affected by ABL kinase inhibitors, the in vivo matrix metalloproteinase (MMP) activity, tumor cell invasion, and consequent spontaneous metastasis to lungs are significantly impaired in inhibitor-treated mice. Further proteogenomic analysis of breast cancer patient databases revealed co-expression of the Abl-related gene (Arg) and cortactin across all hormone- and human epidermal growth factor receptor 2 (HER2)-receptor status tumors, which correlates synergistically with distant metastasis and poor patient prognosis. Our findings establish a prognostic value for Arg and cortactin as predictors of metastatic dissemination and suggest that therapeutic inhibition of ABL kinases may be used for blocking breast cancer metastasis.

14.
PLoS One ; 10(3): e0119610, 2015.
Article in English | MEDLINE | ID: mdl-25786136

ABSTRACT

BACKGROUND: Heparanase, an endoglycosidase that cleaves heparan sulfate (HS), is involved in various biologic processes. Recently, an association between heparanase and glomerular injury was suggested. The present study examines the involvement of heparanase in the pathogenesis of Adriamycin-induced nephrotic syndrome (ADR-NS) in a mouse model. METHODS: BALB/c wild-type (wt) mice and heparanase overexpressing transgenic mice (hpa-TG) were tail-vein injected with either Adriamycin (ADR, 10 mg/kg) or vehicle. Albuminuria was investigated at days 0, 7, and 14 thereafter. Mice were sacrificed at day 15, and kidneys were harvested for various analyses: structure and ultrastructure alterations, podocyte proteins expression, and heparanase enzymatic activity. RESULTS: ADR-injected wt mice developed severe albuminuria, while ADR-hpa-TG mice showed only a mild elevation in urinary albumin excretion. In parallel, light microscopy of stained cross sections of kidneys from ADR-injected wt mice, but not hpa-TG mice, showed mild to severe glomerular and tubular damage. Western blot and immunofluorescence analyses revealed significant reduction in nephrin and podocin protein expression in ADR-wt mice, but not in ADR-hpa-TG mice. These results were substantiated by electron-microscopy findings showing massive foot process effacement in injected ADR-wt mice, in contrast to largely preserved integrity of podocyte architecture in ADR-hpa-TG mice. CONCLUSIONS: Our results suggest that heparanase may play a nephroprotective role in ADR-NS, most likely independently of HS degradation. Moreover, hpa-TG mice comprise an invaluable in vivo platform to investigate the interplay between heparanase and glomerular injury.


Subject(s)
Glucuronidase/metabolism , Nephrotic Syndrome/chemically induced , Nephrotic Syndrome/prevention & control , Albuminuria , Animals , Blotting, Western , Doxorubicin/toxicity , Fluorescent Antibody Technique , Glucuronidase/genetics , Histological Techniques , Kidney/metabolism , Kidney/pathology , Mice , Mice, Inbred BALB C , Mice, Transgenic , Microscopy, Electron , Nephrotic Syndrome/enzymology
15.
Biochem J ; 457(2): 253-61, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24160817

ABSTRACT

Protein homoeostasis is a fundamental requirement for all living cells in order to survive in a dynamic surrounding. Proper levels of AIRAPL (arsenite-inducible RNA-associated protein-like protein) (ZFAND2B) are required in order to maintain cellular folding capacity in metazoans, and functional impairment of AIRAPL results in acceleration of aging and protein aggregation. However, the cellular roles of AIRAPL in this process are not known. In the present paper, we report that AIRAPL binds and forms a complex with p97 [VCP (valosin-containing protein)/Cdc48], Ubxd8 (ubiquitin regulatory X domain 8), Npl4-Ufd1, Derlin-1 and Bag6 on the ER (endoplasmic reticulum) membrane. In spite of the fact that AIRAPL complex partners are involved in the ERAD (ER-associated degradation) process, AIRAPL knockdown does not show any impairment in ERAD substrate degradation. However, translocation into the ER of a subset of ERAD- and non-ERAD-secreted proteins are regulated by AIRAPL. The ability to regulate translocation by the p97-AIRAPL complex is entirely dependent on the proteins' signal peptide. Our results demonstrate a p97 complex regulating translocation into the ER in a signal-peptide-dependent manner.


Subject(s)
Adenosine Triphosphatases/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Endoplasmic Reticulum/metabolism , Protein Sorting Signals/physiology , RNA-Binding Proteins/metabolism , Zinc Fingers/physiology , Adaptor Proteins, Signal Transducing , Adenosine Triphosphatases/genetics , Animals , Carrier Proteins/genetics , Cell Cycle Proteins/genetics , Cell Membrane/metabolism , Humans , Mice , Protein Binding/physiology , Protein Transport/physiology , RNA-Binding Proteins/genetics , Valosin Containing Protein
16.
PLoS One ; 6(12): e29498, 2011.
Article in English | MEDLINE | ID: mdl-22242125

ABSTRACT

When mouse myoblasts or satellite cells differentiate in culture, the expression of myogenic regulatory factor, MyoD, is downregulated in a subset of cells that do not differentiate. The mechanism involved in the repression of MyoD expression remains largely unknown. Here we report that a stress-response pathway repressing MyoD transcription is transiently activated in mouse-derived C2C12 myoblasts growing under differentiation-promoting conditions. We show that phosphorylation of the α subunit of the translation initiation factor 2 (eIF2α) is followed by expression of C/EBP homology protein (CHOP) in some myoblasts. ShRNA-driven knockdown of CHOP expression caused earlier and more robust differentiation, whereas its constitutive expression delayed differentiation relative to wild type myoblasts. Cells expressing CHOP did not express the myogenic regulatory factors MyoD and myogenin. These results indicated that CHOP directly repressed the transcription of the MyoD gene. In support of this view, CHOP associated with upstream regulatory region of the MyoD gene and its activity reduced histone acetylation at the enhancer region of MyoD. CHOP interacted with histone deacetylase 1 (HDAC1) in cells. This protein complex may reduce histone acetylation when bound to MyoD regulatory regions. Overall, our results suggest that the activation of a stress pathway in myoblasts transiently downregulate the myogenic program.


Subject(s)
Cell Differentiation/genetics , MyoD Protein/genetics , Myoblasts/cytology , Repressor Proteins/metabolism , Stress, Physiological , Transcription Factor CHOP/metabolism , Transcription, Genetic , Acetylation , Activating Transcription Factor 3/metabolism , Animals , Biomarkers/metabolism , Cell Line , Eukaryotic Initiation Factor-2/metabolism , Gene Expression Regulation , Histones/metabolism , Mice , Muscle Development/genetics , MyoD Protein/metabolism , Myoblasts/metabolism , Myogenin/genetics , Myogenin/metabolism , Phosphorylation , Protein Binding/genetics
17.
J Biol Chem ; 283(34): 23224-34, 2008 Aug 22.
Article in English | MEDLINE | ID: mdl-18552402

ABSTRACT

The proinflammatory cytokine, TNFalpha plays a major role in muscle wasting occurring in chronic diseases and muscular dystrophies. Among its other functions, TNFalpha perturbs muscle regeneration by preventing satellite cell differentiation. In the present study, the role of c-Jun N-terminal kinase (JNK), a mediator of TNFalpha, was investigated in differentiating myoblast cell lines. Addition of TNFalpha to C2 myoblasts induced immediate and delayed phases of JNK activity. The delayed phase is associated with myoblast proliferation. Inhibition of JNK activity prevented proliferation and restored differentiation to TNFalpha-treated myoblasts. Studies with cell lines expressing MyoD:ER chimera and lacking JNK1 or JNK2 genes indicate that JNK1 activity mediates the effects of TNFalpha on myoblast proliferation and differentiation. TNFalpha does not induce proliferation or inhibit differentiation of JNK1-null myoblasts. However, differentiation of JNK1-null myoblasts is inhibited when they are grown in conditioned medium derived from cell lines affected by TNFalpha. We investigated the induced synthesis of several candidate growth factors and cytokines following treatment with TNFalpha. Expression of IL-6 and leukemia inhibitory factor (LIF) was induced by TNFalpha in wild-type and JNK2-null myoblasts. However, LIF expression was not induced by TNFalpha in JNK1-null myoblasts. Addition of LIF to the growth medium of JNK1-null myoblasts prevented their differentiation. Moreover, LIF-neutralizing antibodies added to the medium of C2 myoblasts prevented inhibition of differentiation mediated by TNFalpha. Hence, TNFalpha promotes myoblast proliferation through JNK1 and prevents myoblast differentiation through JNK1-mediated secretion of LIF.


Subject(s)
Gene Expression Regulation , Leukemia Inhibitory Factor/metabolism , Mitogen-Activated Protein Kinase 8/metabolism , Myoblasts/cytology , Tumor Necrosis Factor-alpha/metabolism , Animals , Cell Cycle , Cell Differentiation , Cell Line , Cell Proliferation , Culture Media, Conditioned/pharmacology , Enzyme Inhibitors/pharmacology , Mice , Mice, Transgenic , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...