Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 929: 172189, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38583624

ABSTRACT

This study explores the incorporation of Nb2AlC and Mo3AlC2 MAX phases, known for their nano-layered structure, into polyether sulfone (PES) membranes to enhance their antifouling and permeability properties for pathogen microorganism filtration against bovine serum albumin (BSA) and Escherichia coli (E. coli). The composite membranes were characterized for their structural and morphological properties, and their performance in mitigating biofouling was evaluated. The structural characterizations have been performed for all the prepared MAX phases and corresponding composite membranes. The antioxidant ability of Nb2AlC and Mo3AlC2 MAX phases was defined by the DPPH radical scavenging assay, and the highest antioxidant ability was found to be 59.35 %, while 53.69 % scavenging potential was recorded at 100 mg/L. The percentage scavenging ability was raised with an increase in concentrations. The antimicrobial properties of MAX phases, evaluated as the minimum inhibitory concentration, were stated against several pathogen microorganisms. The tested compounds of Nb2AlC and Mo3AlC2 composites containing MAX phases exhibited excellent chemical nuclease activity, and it was determined that Nb2AlC caused double strand DNA cleavage activity while Mo3AlC2 induced the complete fragmentation of the DNA molecule. Biofilm inhibition of Nb2AlC and Mo3AlC2 MAX phases was studied against Staphylococcus aureus, and Pseudomonas aeruginosa and the maximum biofilm inhibition of Nb2AlC and Mo3AlC2 MAX phases was found to be 77.15 % and 69.07 % against S. aureus and also 69.74 % and 65.01 % against P. aeruginosa. Furthermore, Nb2AlC and Mo3AlC2 MAX phases demonstrated excellent E. coli growth inhibition of 100 % at 125 and 250 mg/L.


Subject(s)
Biofouling , Escherichia coli , Membranes, Artificial , Polymers , Sulfones , Biofouling/prevention & control , Sulfones/pharmacology , Sulfones/chemistry , Polymers/pharmacology , Escherichia coli/drug effects , Biofilms/drug effects , Filtration
2.
Water Sci Technol ; 88(6): 1417-1427, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37768745

ABSTRACT

Membrane fouling is a serious handicap of membrane-based separation, as it reduces permeation flux and hence increases operational and maintenance expenses. Polyurethane-paraffin wax (PU/PW) nanocapsules were integrated into the polyethersulfone membrane to manufacture a composite membrane with higher antifouling and permeability performance against humic acid (HA) and bovine serum albumin (BSA) foulants. All manufactured membranes were characterized by scanning electron microscopy (SEM), scanning electron microscopy-energy dispersive spectrometry (SEM-EDS), and contact angle. The contact angle of the pristine polyethersulfone (PES) membrane was measured 73.40 ± 1.32. With the embedding of nanocapsules, the contact angle decreased to 64.55 ± 1.23 for PES/PU/PW 2.0 wt%, and the pure water flux of all composite membranes increased when compared to pristine PES. The pristine PES membrane also has shown the lowest steady-state fluxes at 45.84 and 46.59 L/m2h for BSA and HA, respectively. With the increase of PU/PW nanocapsule ratio from 0.5 to 1.0 wt%, steady-state fluxes increased from 51.96 to 71.61 and from 67.87 to 98.73 L/m2h, respectively, for BSA and HA. The results depicted that BSA and HA rejection efficiencies of PU/PW nanocapsules blended PES membranes increased when compared to pristine PES membranes.


Subject(s)
Humic Substances , Nanocapsules , Paraffin , Polyurethanes , Serum Albumin, Bovine
3.
Water Sci Technol ; 87(7): 1616-1629, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37051786

ABSTRACT

Antibacterial membranes have attracted researchers' interest in recent years as a possible approach for dealing with biofouling on the membrane surface. This research aims to see if blending AZ63 Mg alloy into a polyethersulphone (PES) membrane can improve antifouling and separation properties. The composite membranes' pure water flux continued to increase from pristine PES to PES/AZ63 2.00 wt%. The results showed that PES/AZ63 2.00 wt% membrane supplied the highest permeate flux of E. coli. The steady-state fluxes of AZ63 composite membranes were 113.24, 104.38 and 44.79 L/m2h for PES/AZ63 2.00 wt%, 1.00 wt%, and 0.50 wt%, respectively. The enhanced biological activity of AZ63 was studied based on antioxidant activity, DNA cleavage, antimicrobial, anti-biofilm, bacterial viability inhibition and photodynamic antimicrobial therapy studies. The maximum DPPH scavenging activity was determined as 81.25% with AZ63. AZ63 indicated good chemical nuclease activity and also showed moderate antimicrobial activity against studied strains. The highest biofilm inhibition of AZ63 was 83.25% and 71.63% towards P. aeruginosa and S. aureus, respectively. The cell viability inhibition activity of AZ63 was found as 96.34% against E. coli. The photodynamic antimicrobial therapy results displayed that AZ63 demonstrated 100% bacterial inhibition when using E. coli.


Subject(s)
Biofouling , Biofouling/prevention & control , Escherichia coli , Staphylococcus aureus , Membranes, Artificial , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL