Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Nutr ; 10: 1118229, 2023.
Article in English | MEDLINE | ID: mdl-37051127

ABSTRACT

Background: Type 2 diabetes (T2D) diagnoses are predicted to reach 643 million by 2030, increasing incidences of cardiovascular disease and other comorbidities. Rapidly digestible starch elevates postprandial glycemia and impinges glycemic homeostasis, elevating the risk of developing T2D. Starch can escape digestion by endogenous enzymes in the small intestine when protected by intact plant cell walls (resistant starch type 1), when there is a high concentration of amylose (resistant starch type 2) and when the molecule undergoes retrogradation (resistant starch type 3) or chemical modification (resistant starch type 4). Dietary interventions using resistant starch may improve glucose metabolism and insulin sensitivity. However, few studies have explored the differential effects of resistant starch type. This systematic review and meta-analysis aims to compare the effects of the resistant starch from intact plant cell structures (resistant starch type 1) and resistant starch from modified starch molecules (resistant starch types 2-5) on fasting and postprandial glycemia in subjects with T2D and prediabetes. Methods: Databases (PubMed, SCOPUS, Ovid MEDLINE, Cochrane, and Web of Science) were systematically searched for randomized controlled trials. Standard mean difference (SMD) with 95% confidence intervals (CI) were determined using random-effects models. Sub-group analyses were conducted between subjects with T2D versus prediabetes and types of resistant starch. Results: The search identified 36 randomized controlled trials (n = 982), 31 of which could be included in the meta-analysis. Resistant starch type 1 and type 2 lowered acute postprandial blood glucose [SMD (95% CI) = -0.54 (-1.0, -0.07)] and [-0.96 (-1.61, -0.31)]. Resistant starch type 2 improved acute postprandial insulin response [-0.71 (-1.31, -0.11)]. In chronic studies, resistant starch type 1 and 2 lowered postprandial glucose [-0.38 (-0.73, -0.02), -0.29 (-0.53, -0.04), respectively] and resistant starch type 2 intake improved fasting glucose [-0.39 (-0.66, -0.13)] and insulin [-0.40 (-0.60, -0.21)]. Conclusion: Resistant starch types 1 and 2 may influence glucose homeostasis via discrete mechanisms, as they appear to influence glycemia differently. Further research into resistant starch types 3, 4, and 5 is required to elucidate their effect on glucose metabolism. The addition of resistant starch as a dietary intervention for those with T2D or prediabetes may prevent further deterioration of glycemic control.

2.
Heart ; 106(10): 724-731, 2020 05.
Article in English | MEDLINE | ID: mdl-32098809

ABSTRACT

Nutrition has a central role in both primary and secondary prevention of cardiovascular disease yet only relatively recently has food been regarded as a treatment, rather than as an adjunct to established medical and pharmacotherapy. As a field of research, nutrition science is constantly evolving making it difficult for patients and practitioners to ascertain best practice. This is compounded further by the inherent difficulties in performing double-blind randomised controlled trials. This paper covers dietary patterns that are associated with improved cardiovascular outcomes, including the Mediterranean Diet but also low-carbohydrate diets and the potential issues encountered with their implementation. We suggest there must be a refocus away from macronutrients and consideration of whole foods when advising individuals. This approach is fundamental to practice, as clinical guidelines have focused on macronutrients without necessarily considering their source, and ultimately people consume foods containing multiple nutrients. The inclusion of food-based recommendations aids the practitioner to help the patient make genuine and meaningful changes in their diet. We advocate that the cardioprotective diet constructed around the traditional Mediterranean eating pattern (based around vegetables and fruits, nuts, legumes, and unrefined cereals, with modest amounts of fish and shellfish, and fermented dairy products) is still important. However, there are other approaches that can be tried, including low-carbohydrate diets. We encourage practitioners to adopt a flexible dietary approach, being mindful of patient preferences and other comorbidities that may necessitate deviations away from established advice, and advocate for more dietitians in this field to guide the multi-professional team.


Subject(s)
Cardiac Rehabilitation , Cardiovascular Diseases , Nutrients , Preventive Medicine , Cardiac Rehabilitation/methods , Cardiac Rehabilitation/trends , Cardiovascular Diseases/diet therapy , Cardiovascular Diseases/prevention & control , Diet, Healthy , Heart Disease Risk Factors , Humans , Nutritional Sciences/trends , Preventive Medicine/methods , Preventive Medicine/trends
SELECTION OF CITATIONS
SEARCH DETAIL