Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
MedComm (2020) ; 5(5): e539, 2024 May.
Article in English | MEDLINE | ID: mdl-38680520

ABSTRACT

Urgent research into innovative severe acute respiratory coronavirus-2 (SARS-CoV-2) vaccines that may successfully prevent various emerging emerged variants, particularly the Omicron variant and its subvariants, is necessary. Here, we designed a chimeric adenovirus-vectored vaccine named Ad5-Beta/Delta. This vaccine was created by incorporating the receptor-binding domain from the Delta variant, which has the L452R and T478K mutations, into the complete spike protein of the Beta variant. Both intramuscular (IM) and intranasal (IN) vaccination with Ad5-Beta/Deta vaccine induced robust broad-spectrum neutralization against Omicron BA.5-included variants. IN immunization with Ad5-Beta/Delta vaccine exhibited superior mucosal immunity, manifested by higher secretory IgA antibodies and more tissue-resident memory T cells (TRM) in respiratory tract. The combination of IM and IN delivery of the Ad5-Beta/Delta vaccine was capable of synergically eliciting stronger systemic and mucosal immune responses. Furthermore, the Ad5-Beta/Delta vaccination demonstrated more effective boosting implications after two dosages of mRNA or subunit recombinant protein vaccine, indicating its capacity for utilization as a booster shot in the heterologous vaccination. These outcomes quantified Ad5-Beta/Delta vaccine as a favorable vaccine can provide protective immunity versus SARS-CoV-2 pre-Omicron variants of concern and BA.5-included Omicron subvariants.

2.
Genes Dis ; 11(4): 101066, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38550714

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has decreased the efficacy of SARS-CoV-2 vaccines in containing coronavirus disease 2019 (COVID-19) over time, and booster vaccination strategies are urgently necessitated to achieve sufficient protection. Intranasal immunization can improve mucosal immunity, offering protection against the infection and sustaining the spread of SARS-CoV-2. In this study, an intranasal booster of the RBD-HR vaccine after two doses of the mRNA vaccine significantly increased the levels of specific binding antibodies in serum, nasal lavage fluid, and bronchoalveolar lavage fluid compared with only two doses of mRNA vaccine. After intranasal boosting with the RBD-HR vaccine, the levels of serum neutralizing antibodies against prototype and variant strains of SARS-CoV-2 pseudoviruses were markedly higher than those in mice receiving mRNA vaccine alone, and intranasal boosting with the RBD-HR vaccine also inhibited the binding of RBD to hACE2 receptors. Furthermore, the heterologous intranasal immunization regimen promoted extensive memory T cell responses and activated CD103+ dendritic cells in the respiratory mucosa, and potently enhanced the formation of T follicular helper cells and germinal center B cells in vital immune organs, including mediastinal lymph nodes, inguinal lymph nodes, and spleen. Collectively, these data infer that heterologous intranasal boosting with the RBD-HR vaccine elicited broad protective immunity against SARS-CoV-2 both locally and systemically.

3.
Signal Transduct Target Ther ; 8(1): 252, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37336889

ABSTRACT

The COVID-19 response strategies in Chinese mainland were recently adjusted due to the reduced pathogenicity and enhanced infectivity of Omicron subvariants. In Chengdu, China, an infection wave was predominantly induced by the BA.5 subvariant. It is crucial to determine whether the hybrid anti-SARS-CoV-2 immunity following BA.5 infection, coupled with a variety of immune background, is sufficient to shape the immune responses against newly emerged Omicron subvariants, especially for XBB lineages. To investigate this, we collected serum and nasal swab samples from 108 participants who had been infected in this BA.5 infection wave, and evaluated the neutralization against pseudoviruses. Our results showed that convalescent sera from individuals, regardless of vaccination history, had remarkably compromised neutralization capacities against the newly emerged XBB and XBB.1.5 subvariants. Although post-vaccination with BA.5 breakthrough infection slightly elevated plasma neutralizing antibodies against a part of pseudoviruses, the neutralization activities were remarkably impaired by XBB lineages. Furthermore, we analyzed the impacts of the number of vaccinations, age, and sex on the humoral and cellular immune response after BA.5 infection. Our findings suggest that the neutralization against XBB lineages that elicited by current hybrid immunity after BA.5 infection, are remained at low levels, indicating an urgent need for the development of next-generation of COVID-19 vaccines that designed based on the XBB sub-lineages and other future variants.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Humans , Asian People , COVID-19/immunology
4.
Nat Commun ; 14(1): 2678, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37160882

ABSTRACT

Mucosal immunity plays a significant role in the first-line defense against viruses transmitted and infected through the respiratory system, such as SARS-CoV-2. However, the lack of effective and safe adjuvants currently limits the development of COVID-19 mucosal vaccines. In the current study, we prepare an intranasal vaccine containing cationic crosslinked carbon dots (CCD) and a SARS-CoV-2 antigen, RBD-HR with spontaneous antigen particlization. Intranasal immunization with CCD/RBD-HR induces high levels of antibodies with broad-spectrum neutralization against authentic viruses/pseudoviruses of Omicron-included variants and protects immunized female BALB/c mice from Omicron infection. Despite strong systemic cellular immune response stimulation, the intranasal CCD/RBD-HR vaccine also induces potent mucosal immunity as determined by the generation of tissue-resident T cells in the lungs and airway. Moreover, CCD/RBD-HR not only activates professional antigen-presenting cells (APCs), dendritic cells, but also effectively targets nasal epithelial cells, promotes antigen binding via sialic acid, and surprisingly provokes the antigen-presenting of nasal epithelial cells. We demonstrate that CCD is a promising intranasal vaccine adjuvant for provoking strong mucosal immunity and might be a candidate adjuvant for intranasal vaccine development for many types of infectious diseases, including COVID-19.


Subject(s)
COVID-19 , Vaccines , Female , Animals , Mice , Humans , SARS-CoV-2 , COVID-19/prevention & control , Adjuvants, Immunologic , COVID-19 Vaccines , Carbon , Cations
5.
MedComm (2020) ; 4(3): e263, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37125241

ABSTRACT

The XBB.1.5 subvariant has drawn great attention owing to its exceptionality in immune evasion and transmissibility. Therefore, it is essential to develop a universally protective coronavirus disease 2019 vaccine against various strains of Omicron, especially XBB.1.5. In this study, we evaluated and compared the immune responses induced by six different spike protein vaccines targeting the ancestral or various Omicron strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in mice. We found that spike-wild-type immunization induced high titers of neutralizing antibodies (NAbs) against ancestral SARS-CoV-2. However, its activity in neutralizing Omicron subvariants decreased sharply as the number of mutations in receptor-binding domain (RBD) of these viruses increased. Spike-BA.5, spike-BF.7, and spike-BQ.1.1 vaccines induced strong NAbs against BA.5, BF.7, BQ.1, and BQ.1.1 viruses but were poor in protecting against XBB and XBB.1.5, which have more RBD mutations. In sharp contrast, spike-XBB.1.5 vaccination can activate strong and broadly protective immune responses against XBB.1.5 and other common subvariants of Omicron. By performing correlation analysis, we found that the NAbs titers were negatively correlated with the number of RBD mutations in the Omicron subvariants. Vaccines with more RBD mutations can effectively overcome the immune resistance caused by the accumulation of RBD mutations, making spike-XBB.1.5 the most promising vaccine candidate against universal Omicron variants.

6.
MedComm (2020) ; 4(2): e238, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36911160

ABSTRACT

BA.4 and BA.5 (BA.4/5), the subvariants of Omicron, are more transmissible than BA.1 with more robust immune evasion capability because of its unique spike protein mutations. In light of such situation, the vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is in desperate need of the third booster. It has been reported that heterologous boosters might produce more effective immunity against wild-type SARS-CoV-2 and the variants. Additionally, the third heterologous protein subunit booster should be considered potentially. In the present study, we prepared a Delta full-length spike protein sequence-based mRNA vaccine as the "priming" shot and developed a recombinant trimeric receptor-binding domain (RBD) protein vaccine referred to as RBD-HR/trimer as a third heterologous booster. Compared to the homologous mRNA group, the heterologous group (RBD-HR/trimer vaccine primed with two mRNA vaccines) induced higher neutralizing antibody titers against BA.4/5-included SARS-CoV-2 variants. In addition, heterologous vaccination exhibited stronger cellular immune response and long-lasting memory response than the homologous mRNA vaccine. In conclusion, a third heterologous boosting with RBD-HR/trimer following two-dose mRNA priming vaccination should be a superior strategy than a third homologous mRNA vaccine. The RBD-HR/trimer vaccine becomes an appropriate candidate for a booster immune injection.

7.
Signal Transduct Target Ther ; 8(1): 31, 2023 01 16.
Article in English | MEDLINE | ID: mdl-36646686

ABSTRACT

Head and neck cancer (HNC) is malignant, genetically complex and difficult to treat and is the sixth most frequent cancer, with tobacco, alcohol and human papillomavirus being major risk factors. Based on epigenetic data, HNC is remarkably heterogeneous, and treatment remains challenging. There is a lack of significant improvement in survival and quality of life in patients with HNC. Over half of HNC patients experience locoregional recurrence or distal metastasis despite the current multiple traditional therapeutic strategies and immunotherapy. In addition, resistance to chemotherapy, radiotherapy and some targeted therapies is common. Therefore, it is urgent to explore more effective and tolerable targeted therapies to improve the clinical outcomes of HNC patients. Recent targeted therapy studies have focused on identifying promising biomarkers and developing more effective targeted therapies. A well understanding of the pathogenesis of HNC contributes to learning more about its inner association, which provides novel insight into the development of small molecule inhibitors. In this review, we summarized the vital signaling pathways and discussed the current potential therapeutic targets against critical molecules in HNC, as well as presenting preclinical animal models and ongoing or completed clinical studies about targeted therapy, which may contribute to a more favorable prognosis of HNC. Targeted therapy in combination with other therapies and its limitations were also discussed.


Subject(s)
Head and Neck Neoplasms , Quality of Life , Animals , Humans , Signal Transduction , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Immunotherapy , Risk Factors
8.
Cancer Lett ; 554: 216012, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36470544

ABSTRACT

For patients with esophageal squamous cell carcinoma (ESCC), standard therapeutic methods (cisplatin and radiotherapy) have been found to be ineffective and severely toxic. Targeted therapy emerges as a promising solution for this dilemma. It has been reported that targeted therapies are applied alone or in combination with standard conventional therapies for the treatment of a variety of cancers. To the best of our knowledge, in patients with ESCC, the combinational methods containing standard therapy and ERK-targeted therapy have yet to be explored. To analyze the prognostic role of p-ERK in ESCC patients, the Kaplan-Meier analysis and Cox regression model were used. To assess the effects of ERK-targeted therapy (GDC0994) on ESCC cells, in vitro studies including CCK-8 assay, colony formation assay, and scratch wound healing assay were conducted. In addition, the changes in cell cycle distribution and apoptosis were analyzed by flow cytometry. Besides, to assess the efficacy of different therapies in vivo, the xenograft tumor models were established by subcutaneously inoculating tumor cells into the flank/leg of mice. In patients with ESCC, a strong correlation between the high expression level of p-ERK and the poor prognosis (p < 0.01, Log-Rank test) has been identified. By analyzing the results from CCK-8 and scratch wound healing assays, we demonstrated that the ERK inhibitor repressed the viability and migration of ESCC cells. In addition, following the treatment of GDC0994, the volumes of xenograft tumors significantly decreased (p < 0.001, one-way ANOVA). Furthermore, blocking the mitogen-activated protein kinase (MAPK/ERK) pathway enhanced the therapeutic efficacy of both cisplatin and radiotherapy (p < 0.05). These findings imply the role of p-ERK in the prognosis of ESCC patients and the therapeutic value of ERK inhibitors in ESCC.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Animals , Humans , Mice , Apoptosis , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/radiotherapy , Cell Line, Tumor , Cell Proliferation , Chemoradiotherapy/methods , Cisplatin , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/radiotherapy , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/radiotherapy , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology
9.
J Hematol Oncol ; 15(1): 138, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36183125

ABSTRACT

Bruton's tyrosine kinase (BTK) is an essential component of multiple signaling pathways that regulate B cell and myeloid cell proliferation, survival, and functions, making it a promising therapeutic target for various B cell malignancies and inflammatory diseases. Five small molecule inhibitors have shown remarkable efficacy and have been approved to treat different types of hematological cancers, including ibrutinib, acalabrutinib, zanubrutinib, tirabrutinib, and orelabrutinib. The first-in-class agent, ibrutinib, has created a new era of chemotherapy-free treatment of B cell malignancies. Ibrutinib is so popular and became the fourth top-selling cancer drug worldwide in 2021. To reduce the off-target effects and overcome the acquired resistance of ibrutinib, significant efforts have been made in developing highly selective second- and third-generation BTK inhibitors and various combination approaches. Over the past few years, BTK inhibitors have also been repurposed for the treatment of inflammatory diseases. Promising data have been obtained from preclinical and early-phase clinical studies. In this review, we summarized current progress in applying BTK inhibitors in the treatment of hematological malignancies and inflammatory disorders, highlighting available results from clinical studies.


Subject(s)
Antineoplastic Agents , Hematologic Neoplasms , Agammaglobulinaemia Tyrosine Kinase , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Hematologic Neoplasms/drug therapy , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
10.
Nat Commun ; 13(1): 5459, 2022 09 17.
Article in English | MEDLINE | ID: mdl-36115859

ABSTRACT

The recently emerged Omicron (B.1.1.529) variant has rapidly surpassed Delta to become the predominant circulating SARS-CoV-2 variant, given the higher transmissibility rate and immune escape ability, resulting in breakthrough infections in vaccinated individuals. A new generation of SARS-CoV-2 vaccines targeting the Omicron variant are urgently needed. Here, we developed a subunit vaccine named RBD-HR/trimer by directly linking the sequence of RBD derived from the Delta variant (containing L452R and T478K) and HR1 and HR2 in SARS-CoV-2 S2 subunit in a tandem manner, which can self-assemble into a trimer. In multiple animal models, vaccination of RBD-HR/trimer formulated with MF59-like oil-in-water adjuvant elicited sustained humoral immune response with high levels of broad-spectrum neutralizing antibodies against Omicron variants, also inducing a strong T cell immune response in vivo. In addition, our RBD-HR/trimer vaccine showed a strong boosting effect against Omicron variants after two doses of mRNA vaccines, featuring its capacity to be used in a prime-boost regimen. In mice and non-human primates, RBD-HR/trimer vaccination could confer a complete protection against live virus challenge of Omicron and Delta variants. The results qualified RBD-HR/trimer vaccine as a promising next-generation vaccine candidate for prevention of SARS-CoV-2, which deserved further evaluation in clinical trials.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , Mice, Inbred BALB C , Protein Subunits , SARS-CoV-2 , Vaccines, Subunit , Water
11.
Cell Prolif ; 55(9): e13250, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35747936

ABSTRACT

BACKGROUND: The adverse effect of excessive salt intake has been recognized in decades. Researchers have mainly focused on the association between salt intake and hypertension. However, studies in recent years have proposed the existence of extra-renal sodium storage and provided insight into the immunomodulatory function of sodium. OBJECTIVES: In this review, we discuss the modulatory effects of high salt on various innate and adaptive immune cells and immune-regulated diseases. METHODS: We identified papers through electronic searches of PubMed database from inception to March 2022. RESULTS: An increasing body of evidence has demonstrated that high salt can modulate the differentiation, activation and function of multiple immune cells. Furthermore, a high-salt diet can increase tissue sodium concentrations and influence the immune responses in microenvironments, thereby affecting the development of immune-regulated diseases, including hypertension, multiple sclerosis, cancer and infections. These findings provide a novel mechanism for the pathology of certain diseases and indicate that salt might serve as a target or potential therapeutic agent in different disease contexts. CONCLUSION: High salt has a profound impact on the differentiation, activation and function of multiple immune cells. Additionally, an HSD can modulate the development of various immune-regulated diseases.


Subject(s)
Hypertension , Sodium Chloride, Dietary , Humans , Hypertension/chemically induced , Immunity , Kidney , Sodium , Sodium Chloride, Dietary/adverse effects
12.
Signal Transduct Target Ther ; 7(1): 159, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35581200

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) has posed great threats to global health and economy. Several effective vaccines are available now, but additional booster immunization is required to retain or increase the immune responses owing to waning immunity and the emergency of new variant strains. The deficiency of intramuscularly delivered vaccines to induce mucosal immunity urged the development of mucosal vaccines. Here, we developed an adjuvanted intranasal RBD vaccine and monitored its long-term immunogenicity against both wild-type and mutant strains of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), including Omicron variants, in mice. Three-dose intranasal immunization with this vaccine induced and maintained high levels of neutralizing IgG antibodies in the sera for at least 1 year. Strong mucosal immunity was also provoked, including mucosal secretory IgA and lung-resident memory T cells (TRM). We also demonstrated that the long-term persistence of lung TRM cells is a consequence of local T-cell proliferation, rather than T-cell migration from lymph nodes. Our data suggested that the adjuvanted intranasal RBD vaccine is a promising vaccine candidate to establish robust, long-lasting, and broad protective immunity against SARS-CoV-2 both systemically and locally.


Subject(s)
COVID-19 , SARS-CoV-2 , Administration, Intranasal , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , Vaccines, Synthetic
13.
Bioact Mater ; 17: 29-48, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35386442

ABSTRACT

Biotherapy has recently become a hotspot research topic with encouraging prospects in various fields due to a wide range of treatments applications, as demonstrated in preclinical and clinical studies. However, the broad applications of biotherapy have been limited by critical challenges, including the lack of safe and efficient delivery systems and serious side effects. Due to the unique potentials of biomaterials, such as good biocompatibility and bioactive properties, biomaterial-assisted biotherapy has been demonstrated to be an attractive strategy. The biomaterial-based delivery systems possess sufficient packaging capacity and versatile functions, enabling a sustained and localized release of drugs at the target sites. Furthermore, the biomaterials can provide a niche with specific extracellular conditions for the proliferation, differentiation, attachment, and migration of stem cells, leading to tissue regeneration. In this review, the state-of-the-art studies on the applications of biomaterials in biotherapy, including drug delivery, vaccine development, gene therapy, and stem cell therapy, have been summarized. The challenges and an outlook of biomaterial-assisted biotherapies have also been discussed.

14.
Cell Mol Immunol ; 19(5): 577-587, 2022 05.
Article in English | MEDLINE | ID: mdl-35273357

ABSTRACT

Neutrophil extracellular traps (NETs) can capture and kill viruses, such as influenza viruses, human immunodeficiency virus (HIV), and respiratory syncytial virus (RSV), thus contributing to host defense. Contrary to our expectation, we show here that the histones released by NETosis enhance the infectivity of SARS-CoV-2, as found by using live SARS-CoV-2 and two pseudovirus systems as well as a mouse model. The histone H3 or H4 selectively binds to subunit 2 of the spike (S) protein, as shown by a biochemical binding assay, surface plasmon resonance and binding energy calculation as well as the construction of a mutant S protein by replacing four acidic amino acids. Sialic acid on the host cell surface is the key molecule to which histones bridge subunit 2 of the S protein. Moreover, histones enhance cell-cell fusion. Finally, treatment with an inhibitor of NETosis, histone H3 or H4, or sialic acid notably affected the levels of sgRNA copies and the number of apoptotic cells in a mouse model. These findings suggest that SARS-CoV-2 could hijack histones from neutrophil NETosis to promote its host cell attachment and entry process and may be important in exploring pathogenesis and possible strategies to develop new effective therapies for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Histones , Mice , N-Acetylneuraminic Acid , Protein Subunits/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization
15.
EBioMedicine ; 76: 103841, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35085851

ABSTRACT

Currently licensed COVID-19 vaccines are all designed for intramuscular (IM) immunization. However, vaccination today failed to prevent the virus infection through the upper respiratory tract, which is partially due to the absence of mucosal immunity activation. Despite the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, the next generation of COVID-19 vaccine is in demand and intranasal (IN) vaccination method has been demonstrated to be potent in inducing both mucosal and systemic immune responses. Presently, although not licensed, various IN vaccines against SARS-CoV-2 are under intensive investigation, with 12 candidates reaching clinical trials at different phases. In this review, we give a detailed description about current status of IN COVID-19 vaccines, including virus-vectored vaccines, recombinant subunit vaccines and live attenuated vaccines. The ongoing clinical trials for IN vaccines are highlighted. Additionally, the underlying mechanisms of mucosal immunity and potential mucosal adjuvants and nasal delivery devices are also summarized.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , Administration, Intranasal , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Clinical Trials as Topic , Humans , Immunity, Mucosal , SARS-CoV-2/isolation & purification , Viral Vaccines/administration & dosage , Viral Vaccines/immunology
16.
Mol Biomed ; 2(1): 1, 2021.
Article in English | MEDLINE | ID: mdl-34766001

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an acute respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-COV-2). COVID-19 can spread to the entire body and cause multiple organ failure. It is a daunting challenge to control the fast growing worldwide pandemic because effective prevention and treatment strategies are unavailable currently. Generally, the immune response of the human body triggered by viral infection is essential for the elimination of the virus. However, severe COVID-19 patients may manifest dysregulated immune responses, such as lymphopenia, lymphocyte exhaustion, exacerbated antibody response, cytokine release syndrome (CRS), etc. Understanding of these immunological characteristics may help identify better approaches for diagnosis, prognosis and treatment of COVID-19 patients. As specific anti-viral agents are notoriously difficult to develop, strategies for modulating the immune responses by either developing novel vaccines or using immunotherapy hold great promise to improve the management of SARS-CoV-2 infection.

17.
Front Oncol ; 11: 606677, 2021.
Article in English | MEDLINE | ID: mdl-34367940

ABSTRACT

OBJECTIVES: The purpose of this study aimed at investigating the reliability of radiomics features extracted from contrast-enhanced CT in differentiating pancreatic cystadenomas from pancreatic neuroendocrine tumors (PNETs) using machine-learning methods. METHODS: In this study, a total number of 120 patients, including 66 pancreatic cystadenomas patients and 54 PNETs patients were enrolled. Forty-eight radiomic features were extracted from contrast-enhanced CT images using LIFEx software. Five feature selection methods were adopted to determine the appropriate features for classifiers. Then, nine machine learning classifiers were employed to build predictive models. The performance of the forty-five models was evaluated with area under the curve (AUC), accuracy, sensitivity, specificity, and F1 score in the testing group. RESULTS: The predictive models exhibited reliable ability of differentiating pancreatic cystadenomas from PNETs when combined with suitable selection methods. A combination of DC as the selection method and RF as the classifier, as well as Xgboost+RF, demonstrated the best discriminative ability, with the highest AUC of 0.997 in the testing group. CONCLUSIONS: Radiomics-based machine learning methods might be a noninvasive tool to assist in differentiating pancreatic cystadenomas and PNETs.

19.
Acta Pharm Sin B ; 10(10): 1880-1903, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33163342

ABSTRACT

Lysosome is a ubiquitous acidic organelle fundamental for the turnover of unwanted cellular molecules, particles, and organelles. Currently, the pivotal role of lysosome in regulating cell death is drawing great attention. Over the past decades, we largely focused on how lysosome influences apoptosis and autophagic cell death. However, extensive studies showed that lysosome is also prerequisite for the execution of regulated necrosis (RN). Different types of RN have been uncovered, among which, necroptosis, ferroptosis, and pyroptosis are under the most intensive investigation. It becomes a hot topic nowadays to target RN as a therapeutic intervention, since it is important in many patho/physiological settings and contributing to numerous diseases. It is promising to target lysosome to control the occurrence of RN thus altering the outcomes of diseases. Therefore, we aim to give an introduction about the common factors influencing lysosomal stability and then summarize the current knowledge on the role of lysosome in the execution of RN, especially in that of necroptosis, ferroptosis, and pyroptosis.

20.
Clin Transl Med ; 10(5): e167, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32997401

ABSTRACT

Checkpoint blockade therapy has shown significant therapeutic benefits and resulted in durable responses in patients with various tumors. However, accumulating evidence has demonstrated that 4-29% of all patients with cancers with various histologies may suffer from tumor flare following such therapy. This novel tumor response pattern, termed hyperprogression, is a potentially deleterious side effect of checkpoint blockade therapy that accelerates disease progression in a subset of patients. In this review, we describe possible immune checkpoint blockade biomarkers and the epidemiology, different definitions, and predictors of hyperprogression based on the research findings and further present the available evidence supporting pathophysiological hypotheses that might explain hyperprogression during checkpoint blockade therapy. We also compare hyperprogression and pseudoprogression. Finally, we discuss areas requiring further study.

SELECTION OF CITATIONS
SEARCH DETAIL
...