Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Crit Rev Food Sci Nutr ; : 1-38, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37846905

ABSTRACT

Extensive research from large prospective cohort studies and meta-analytical investigations over recent decades have consistently indicated that dairy foods have protective effects, reducing the risk of colorectal cancer. Most of the literature has explored the potential role of milk minerals and vitamins in managing colorectal cancer. Yet, there is a paucity of a comprehensive summary of the anticancer attributes of milk protein components and their underlying mechanisms of action. Recent advancements have spotlighted the potential of whey proteins, including ß-lactoglobulin, α-lactalbumin, serum albumin, and lactoferrin, as promising candidates for both the prevention and treatment of colorectal cancer. Notably, whey proteins have demonstrated a more pronounced capacity for suppressing carcinogen-induced tumors when compared to casein. Their strong binding affinity enables them to serve as effective carriers for small molecules or drugs targeting colon cancer therapy. Furthermore, numerous studies have underscored the anti-inflammatory and antioxidant prowess of whey proteins in cancer prevention. Additionally, whey proteins have been shown to trigger apoptosis, hinder tumor cell proliferation, and impede metastasis. This comprehensive review, therefore, not only substantiates the significance of incorporating whey protein components into a balanced daily diet but also underscores their potential in safeguarding against the onset and progression of colorectal cancer.


Dairy products have consistently had protective effects in reducing the risk of colorectal cancer.Whey proteins have shown promise as candidates for the prevention and treatment of colorectal cancer.Whey proteins have a strong binding ability, enabling them to act as carriers of small molecules or drugs targeting colon cancer therapy.Their anti-inflammatory and anti-oxidant capacity may play a role in cancer prevention.Whey proteins could induce apoptosis and inhibit the proliferation and metastasis of tumor cells.

2.
J Anim Sci Biotechnol ; 14(1): 107, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37482622

ABSTRACT

BACKGROUND: Previous investigations into the effect of dietary forage on calf performance have been inconsistent, and there is a paucity of information exploring the effect of age on the growth performance and rumination of calves. Eighty-four female Holstein calves (41.5 ± 4.2 kg) were enrolled at birth, a subset of the calves were fed calf starter only (CON, n = 21) while the rest (n = 63) were classified into three treatment groups: the early (EHAY, n = 26, 5.1 ± 0.8 d), the middle (MHAY, n = 21, 7.9 ± 0.8 d) and the late (LHAY, n = 16, 12.1 ± 1.4 d) hay consumers. The short-term effect of the age at first forage consumption (AFF) on calves' feed intake was monitored until d 84. In addition, the long-term effects of AFF on body weight, structural growth and rumination behavior were recorded until d 196. Rumen samples were collected on d 1, 7, 35, 84 and 196 to analyze the rumen fermentation, while fecal samples were collected from d 78 to 84 to estimate digestibility parameters. RESULTS: Treatment had no effect on feed intake. While, the EHAY calves tended to have lower BW and ADG compared to LHAY and CON calves. Several total-tract apparent digestibility parameters and digestible nutrients intake were significantly lower in EHAY calves compared with CON and LHAY calves. Calves in the EHAY group tended to begin ruminating ealier, while CON calves were the latest (12.3 vs. 15.5 days of age). A treatment and time interaction was present for rumination time due to greater rumination in calves consuming hay compared to CON calves in week 10 to 12, the differences in rumination disappeared afterwards, no long-lasting significant differences in the rumination and rumen fermentation parameters were found between treatments. CONCLUSIONS: In conclusion, this study showed that hay consumption earlier in life (in the first week, around 5 days of life) could negatively affect the growth of the calf in the short and long term. Compared to consuming hay from the second week (around 12 days of life) or feeding concentrate only without hay, starting to consume hay from the first week could compromise nutrient digestibility and digestible nutrient intake independent of developing rumination behaviour and rumen fermentation.

3.
J Dairy Sci ; 106(9): 6402-6415, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37500426

ABSTRACT

Calf behavior is closely related to its early growth, production performance, and health performance. Continuous behavior recording is the most accurate but also time-consuming method used for monitoring animal behaviors, so the instantaneous sampling method is often adopted to minimize the time required to quantify behavioral observations in animal studies. Moreover, the optimal sampling intervals required to yield accurate information for estimating Holstein dairy calves' behaviors are still unknown. Our primary objective was to determine the most optimal sampling intervals for monitoring behaviors of Holstein dairy calves during preweaning and weaning periods to improve efficiency while maintaining reliability. The secondary objective was to describe their behavioral patterns. Rumination, lying, standing, and non-nutritive oral behavior (NNOB) data of 18 calves (observation time: 360 h/calf, 6,480 h in total) were continuously recorded for 15 d (3 d at 1, 3, 6, 9, and 12 wk of age). The continuous behavioral data were compared with instantaneous sampling at 5 s, 10 s, 15 s, 30 s,1 min, 3 min, 5 min, 10 min, 15 min, 30 min, and 60 min intervals. Sampling intervals were considered accurate if they met 4 criteria: coefficient of determination ≥0.90 (i.e., strongly related to true values), slope = 1, intercept = 0 (i.e., they did not over- or underestimate true values), and relative error <10%. The most optimal sampling interval was considered the highest sampling interval among the 11 sampling intervals that meet the criteria for accurate monitoring. As expected, the strength of the linear relationship between the continuous recording and instantaneous sampling decreased as the sampling intervals increased. The results varied across the different behaviors, with rumination, lying, standing, and NNOB being reliable at instantaneous recordings of 3 min, 10 min, 10 min, and 1 min for the preweaning period (1, 3, and 6 wk of age) and 10 min, 10 min, 15 min, and 3 min for the postweaning period (9 and 12 wk of age). In terms of behavioral patterns, lying time decreased, whereas rumination, standing, and NNOB time increased with age. After weaning, no significant changes in time spent performing these behaviors. Additionally, the rumination behavioral pattern becomes stable after wk 6 with decreasing after the morning feeding and occurring mainly in the morning. In conclusion, instantaneous sampling is a reliable method for monitoring the behaviors of dairy calves, but the optimal sampling intervals should be selected based on different ages and management conditions.


Subject(s)
Behavior, Animal , Feeding Behavior , Animals , Cattle , Reproducibility of Results , Weaning , Animal Feed/analysis , Diet/veterinary
4.
Front Microbiol ; 13: 916195, 2022.
Article in English | MEDLINE | ID: mdl-35910632

ABSTRACT

A novel pre-treatment using corn steep liquor (CSL) and urea was developed to enhance the enzymatic saccharification and degradability of rice straw (RS). We used RS (1) without (Con) or with additives of (2) 5% urea (U), (3) 9% CSL and 2.5% urea (CU), and (4) 9% CSL and 5% urea (C5U). The result showed that the water-soluble carbohydrate (WSC) conversion of RS reached 69.32% after C5U pre-treatment. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction analysis (XRD) confirmed that the surface of pre-treated RS exposed more cellulose and hemicellulose due to the disruption of the resistant structure of lignocellulose. Pre-treated RS significantly decreased neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents and increased crude protein (CP) content, microbial colonization, and induction of Carnobacterium and Staphylococcus attachment. Altogether, we concluded that pre-treatment of a combination of CSL and urea has the potential to improve the nutritive value of RS.

5.
Front Nutr ; 9: 989239, 2022.
Article in English | MEDLINE | ID: mdl-35990351

ABSTRACT

The current study evaluated the corn steep liquor (CSL) and urea-alkali pretreatment effect to enhance biodegradation and hydrolysis of rice straw (RS) by ruminal microbiome. The first used RS (1) without (Con) or with additives of (2) 4% CaO (Ca), (3) 2.5% urea plus 4% CaO (UCa) and (4) 9% corn steep liquor + 2.5% urea + 4% CaO (CUCa), and then the efficacy of CSL plus urea-alkali pretreatment was evaluated both in vitro and in vivo. The Scanning electron microscopy, X-ray diffraction analysis, cellulose degree of polymerization and Fourier-transform infrared spectroscopy, respectively, results showed that Ca, UCa, and CUCa pretreatment altered the physical and chemical structure of RS. CSL plus Urea-alkali pretreated enhanced microbial colonization by improving the enzymolysis efficiency of RS, and specially induced adhesion of Carnobacterium and Staphylococcus. The CUCa pretreatment could be developed to improve RS nutritional value as forage for ruminants, or as feedstock for biofuel production.

6.
Anim Nutr ; 10: 399-411, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35949196

ABSTRACT

Butyrate and its derivatives possess various nutritional and biological benefits for mammals, whereas its effects on dairy calves have not been well characterized. This study evaluated the effects of tributyrin administration on blood immune, intestinal immune and barrier functions, and microbial composition of pre-weaned dairy calves. Twenty newborn Holstein bull calves were randomly assigned into a control group (no tributyrin supplementation, CON; n = 10) or a treatment group (supplemented with tributyrin at 2 g/L of milk, TRB; n = 10). The results showed that diarrhea frequency was decreased significantly by tributyrin administration from d 29 to 56 (P < 0.001) and the whole period (P = 0.003, d 1 to 56) though no significant effects were observed on growth performance. For blood metabolites, tributyrin administration significantly reduced the concentration of interleukin-1ß (IL-1ß) on d 28 (P = 0.001) and tended to reduce the concentration of serum amyloid A on d 56 (P = 0.079), whereas serum oxidative status parameters were not affected. For intestinal development, tributyrin administration increased the villus height (P < 0.001) and the ratio of villus height to crypt depth (P = 0.046) in the jejunum, and the villus height in the ileum (P = 0.074). Furthermore, toll-like receptor 2 (TRL2, P = 0.045) and IL-1ß (P = 0.088) gene expressions were downregulated, while claudin-4 (P = 0.022) gene expression was upregulated in the jejunum following tributyrin administration. In the ileum, claudin-4 (P = 0.029) and G-protein coupled receptor 41 (P = 0.019) gene expressions were upregulated in the TRB group compared to CON. No significantly higher abundances of microbiota were found in the jejunum or ileum of calves in the CON group. In the TRB group, supplementing tributyrin significantly increased the abundance of short-chain fatty acid (SCFA)-producing bacteria, including Ruminococcaceae, Lachnospiraceae, Prevotella and Rikenellaceae (LDA >3.5, P < 0.05), which was negatively associated with inflammatory gene expression (TLR2 and IL-1ß) but positively associated with intestinal barrier genes (claudin-4) and morphological parameters (P < 0.05). In conclusion, supplementing tributyrin in milk replacer could improve intestinal development and health of pre-weaned dairy calves by stimulating SCFA-producing bacteria colonization, enhancing intestinal barrier functions and suppressing inflammatory responses.

7.
Front Vet Sci ; 9: 898295, 2022.
Article in English | MEDLINE | ID: mdl-35656173

ABSTRACT

Waste milk (WM) is a part of the milk produced on dairy farms, which is usually unsuitable for human consumption. The WM contains transition milk, mastitis milk, colostrum, milk with somatic cells, blood ( Hemolactia ), harmful pathogens, pathogenic and antibiotic residues. Due to the high cost of milk replacer (MR), dairy farmers prefer raw WM to feed their calves. It has been well established that WM has a greater nutritive value than MR. Hence WM can contribute to improved growth, rumen development, and immune-associated parameters when fed to dairy calves. However, feeding raw WM before weaning has continuously raised some critical concerns. The pathogenic load and antibiotic residues in raw WM may increase the risk of diseases and antibacterial resistance in calves. Thus, pasteurization has been recommended as an effective method to decrease the risk of diseases in calves by killing/inhibiting the pathogenic microorganisms in the raw WM. Altogether, the current review provides a brief overview of the interplay between the positive role of raw WM in the overall performance of dairy calves, limitations of raw WM as a feed source and how to overcome these issues arising from feeding raw WM.

8.
Front Vet Sci ; 9: 900764, 2022.
Article in English | MEDLINE | ID: mdl-35754539

ABSTRACT

Aims: This study aims to evaluate the effect of lactic acid bacteria (LAB) and LAB-molasses (LAB + M) combination on the fermentation quality, chemical composition, physicochemical properties, in vitro degradability of rice straw and the characteristics of rumen microbial colonization on rice straw surface. Methods and Results: There were three pretreatments, including control (not treated, Con), treated with LAB, or LAB + M. The results showed that both LAB and LAB + M treatments altered the physical and chemical structures of rice straw and were revealed by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) spectroscopy, respectively. Moreover, both LAB and LAB + M pretreated rice straw increased the crude protein (CP) content, dry matter (DM) recovery, and in vitro digestibility and decreased the pH value, neutral detergent fiber (NDF), and acid detergent fiber (ADF) contents. The LAB + M pretreated rice straw increased the gas production (GP72) and rumen microbial colonization on the rice straw surface. Conclusions: It is observed that LAB + M treatment could increase digestibility and the rumen microbial colonization on the rice straw surface. Therefore, LAB + M treatment can provide an alternative strategy to improve the quality of rice straw. Significance and impact of the study: This study provides an optimal pretreatment to improve the rice straw digestibility and rumen microbial colonization.

9.
Antioxidants (Basel) ; 11(4)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35453342

ABSTRACT

Mastitis (inflammation of the mammary gland) commonly occurs in dairy cattle during the periparturient period (transition period), in which dairy cattle experience physiological and hormonal changes and severe negative energy balance, followed by oxidative stress. To maintain successful lactation and combat negative energy balance (NEB), excessive fat mobilization occurs, leading to overproduction of reactive oxygen species (ROS). Excessive fat mobilization also increases the concentrations of nonesterified fatty acids (NEFA) and ß-hydroxybutyric acid (BHB) during the periparturient period. In addition, the excessive utilization of oxygen by cellular respiration in the mammary causes abnormal production of oxidative stress (OS). OS impairs the immunity and anti-inflammatory efficiency of periparturient dairy cattle, increasing their susceptibility to mastitis. To alleviate oxidative stress and subsequent mastitis, antioxidants are supplemented to dairy cattle from an external source. Extensive studies have been conducted on the supplementation of selenium (Se) and vitamins E and B9 to mitigate mastitis during the transition period in dairy cattle. Altogether, in the current review, we discuss the research development on bovine mastitis and its major causes, with special emphasis on oxidative stress during the transition period. Moreover, we discuss the antioxidant, immunoregulatory, and anti-inflammatory properties of Se and vitamins E and B9 and their role in the control of bovine mastitis in periparturient dairy cattle.

10.
Metabolites ; 11(12)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34940648

ABSTRACT

The aim of this study was to evaluate the effect of the length of oat hay on the performance, health, behavior, and rumen fermentation of dairy calves. For this purpose, two hundred and ten healthy two-day-old Holstein dairy calves were randomly allocated into three groups: basic diet (calf starter) without hay (CON), or a basic diet with oat hay at either long (OL: 10-12 cm) or short (OS: 3-5 cm) length cut. The basic diet was fed from day 4, while the hay was offered from day 14. All calves were weaned at day 56 and remained in their individual hutches till the end of the trial (day 70). Calf starter intake and fecal scores were recorded daily. Bodyweight, body size, and rumen fluid samples were collected biweekly before weaning and weekly after weaning. Overall, providing oat hay (OS and OL) in the diet increased the body weight, starter intake, and average daily gain compared to the CON group. Similarly, feeding oat hay improved rumen fermentation. More specifically, hay enhanced the rumen pH and changed the rumen fermentation type. Hay fed calves spent more time on rumination but less time performing abnormal behaviors compared to control. As it can be concluded, feeding oat hay to calves enhances the growth performance, rumen fermentation, and normal calf behaviors, implying improved animal welfare irrespective of the hay length.

11.
Antioxidants (Basel) ; 10(10)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34679690

ABSTRACT

Dairy cattle experience health risks during the periparturient period. The continuous overproduction of reactive oxygen species (ROS) during the transition from late gestation to peak lactation leads to the development of oxidative stress. Oxidative stress is usually considered the main contributor to several diseases such as retained placenta, fatty liver, ketosis, mastitis and metritis in periparturient dairy cattle. The oxidative stress is generally balanced by the naturally available antioxidant system in the body of dairy cattle. However, in some special conditions, such as the peripariparturient period, the natural antioxidant system of a body is not able to balance the ROS production. To cope with this situation, the antioxidants are supplied to the dairy cattle from external sources. Natural antioxidants such as selenium and vitamin E have been found to restore normal health by minimizing the harmful effects of excessive ROS production. The deficiencies of Se and vitamin E have been reported to be associated with various diseases in periparturient dairy cattle. Thus in the current review, we highlight the new insights into the Se and vitamin E supplementation as antioxidant agents in the health regulation of periparturient dairy cattle.

13.
J Dairy Sci ; 104(4): 4146-4156, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33589266

ABSTRACT

The objective of this study was to investigate the short- and long-term effects of different feed presentations on feed sorting and rumen pH in weaned calves. Thirty-six weaned female calves at the age of 12 wk (78 d) were raised in pairs (18 pens; n = 6/treatment) and randomly exposed to 1 of 3 feed presentation treatments: (1) concentrate ration (CON, only exposed to concentrate); (2) separate ration (CH, exposed to concentrate and hay as separate components); and (3) mixed ration (Mix, exposed to a mixed diet containing 75% concentrate and 25% hay). After 4 wk (from d 78 to 105) on different feed presentations, all weaned calves were introduced to a novel total mixed ration (TMR) for another 12 wk (from d 106 to 189). Fresh feed and orts were sampled daily before (wk 12 to 15) and after (wk 16, 17, and 28) transitioning to a TMR diet for analysis of feed sorting. Rumen fluid was sampled in wk 12, 13, 15, 16, 17, and 28 to determine rumen pH. The performance of weaned calves was affected by the different feed presentations during the pre-changing period, such that calves fed CON had a lower dry matter intake (DMI) and average daily gain than calves fed CH and Mix diets. When calves were introduced to the Mix diet, they immediately developed a higher degree of sorting behavior against the long particle fractions. Upon transition to TMR, we did not observe any differences in the performance of calves. However, the sorting behavior established in Mix calves persisted and was similar to calves previously fed the CON diet, whereas the extent of feed sorting in calves initially fed CH was less compared with that in the other 2 treatments in wk 16 and 17. Before changing the diet was transitioned to a TMR, calves fed CON had a lower rumen pH than calves fed CH and Mix. Although rumen pH in all treatments increased to the same level after the diet changed, we observed a tendency toward lower rumen pH in calves fed Mix compared with calves fed CH at wk 17, which might have resulted from the higher degree of feed sorting in these calves. However, by the end of the experiment (wk 28), feed sorting and rumen pH were similar across all treatments. These results indicated a short-term effect of previous feed presentations on subsequent feed sorting and rumen pH, but in the long term disappeared.


Subject(s)
Animal Feed , Rumen , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Feeding Behavior , Female , Hydrogen-Ion Concentration , Weaning
14.
Anim Biosci ; 34(4): 759-769, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32810941

ABSTRACT

OBJECTIVE: This study aimed to investigate the effect of stocking density on the behavior, productivity, and metabolism of periparturient Holstein cows as well as calf performance. METHODS: A total of 48 periparturient cows were randomly assigned into three groups at 28 days (±3 days) before their expected calving date. The stocking densities of the groups, relative to the standard cubicle and feed bunk number, were i) 80% (13 cows), ii) 100% (16 cows), and iii) 120% (19 cows). Lying and rumination behavior was recorded using electronic data loggers and HR-Tags from d -21 ("d-" means days before calving) until the calving date, d 0. Lying time was assessed to determine the diurnal total hours spent lying per day. Rumination time was averaged in 2 hours interval periods over 24 hours during the experimental period. RESULTS: Cows in the 80% group spent more time lying and ruminating between d -21 and d -7 and tended to ruminate more between d -14 and d 0. Calcium levels tended to be higher for cows in the 80% group, no other observable differences were found in monitored blood parameters. Moreover, 3.5% fat corrected milk and energy corrected milk yields were higher in 80% group in the first month of lactation. No other observable differences were found in the yield and composition of colostrum and milk in the first 10 months of lactation. The growth and performance of calves in the first week of life was not affected by stocking density of the dams. CONCLUSION: We concluded that lower stocking density may increase lying and ruminating behavior of prepartum Holstein cows. However, this did not translate into improved productivity and metabolism.

15.
AMB Express ; 10(1): 167, 2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32944794

ABSTRACT

The dynamics of the community structure and composition of the dairy cow fecal bacterial communities during early lactation is unclear, therefore this study was conducted to characterize the fecal bacterial communities in dairy cows during early lactation using 16S rRNA gene sequencing. Feces were sampled from 20 healthy fresh Holstein dairy cows on day 1 (Fresh1d group) and day 14 (Fresh14d group) after calving. After calving, cows were fed the same fresh diet. The dominant phyla Firmicutes and Proteobacteria were decreased (P ≤ 0.01) with lactating progress and phyla Bacteroidetes were increased (P = 0.008) with lactating progress and dietary transition. At family level, the predominant families were Ruminococcaceae (35.23%), Lachnospiraceae (11.46%), Rikenellaceae (10.44%) and Prevotellaceae (6.89%). A total of 14 genera were different between fecal samples from Fresh1d and Fresh14d, included the predominant genera, such as Ruminococcaceae_UCG-005 (P = 0.008), Rikenellaceae_RC9_gut_group (P = 0.043) and Christensenellaceae_R-7_group (P = 0.008). All fecal bacterial communities shared members of the genera Ruminococcaceae_UCG-005, Bacteroides and Rikenellaceae_RC9_gut_group. These findings help to improve our understanding of the composition and structure of the fecal microbial community in fresh cows and may provide insight into bacterial adaptation time and dietary in lactating cows.

16.
Animals (Basel) ; 10(2)2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31978953

ABSTRACT

The provision of forage to pre-weaned calves has been continuously researched and discussed by scientists, though results associated with calf growth and performance have remained inconsistent. Multiple factors, including forage type, intake level, physical form, and feeding method of both solid and liquid feed, can influence the outcomes of forage inclusion on calf performance. In the current review, we summarized published literature in order to get a comprehensive understanding of how early forage inclusion in diets affects calf growth performance, rumen fermentation, microbiota composition, and the development of feeding behavior. A small amount of good quality forage, such as alfalfa hay, supplemented in the diet, is likely to improve calf feed intake and growth rate. Provision of forage early in life may result in greater chewing (eating and ruminating) activity. Moreover, forage supplementation decreases non-nutritive oral and feed sorting behaviors, which can help to maintain rumen fluid pH and increase the number of cellulolytic bacteria in the rumen. This review argues that forage provision early in life has the potential to affect the rumen environment and the development of feeding behavior in dairy calves. Continued research is required to further understand the long-term effects of forage supplementation in pre-weaned calves, because animal-related factors, such as feed selection and sorting, early in life may persist until later in adult life.

17.
Animals (Basel) ; 10(1)2019 Dec 25.
Article in English | MEDLINE | ID: mdl-31881736

ABSTRACT

The aim of this study was to evaluate the effects of pair versus individual housing on performance, health, and behavior of dairy calves. Thirty female Holstein dairy calves were assigned to individual (n = 10) or pair housing (n = 10 pairs). The results showed that both treatments had a similar starter intake and average daily gain (ADG) during the preweaning period. During weaning and postweaning periods, paired calves had a higher starter intake, and the ADG of paired calves continued to increase but calves housed individually experienced a growth check. Paired calves showed higher diarrhea frequency only in week three. The results on behavior showed that feeding, chewing and ruminating time increased, and self-grooming time decreased with age during weaning and postweaning periods, and paired calves spent less time feeding, standing and self-grooming but more time lying during this time. After mixing, feeding, and chewing and ruminating time continued to rise, and self-grooming time continued to decline for both treatments. All calves spent less time standing and non-nutritive manipulation after mixing, and previously individually housed calves tended to increase non-nutritive manipulation. These results showed that pair housing improved growth during weaning and postweaning periods and that calves altered their behavior at different phases. Less social contact may lead to more non-nutritive manipulation.

18.
Environ Sci Pollut Res Int ; 24(21): 17255-17266, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28555394

ABSTRACT

Although epidemiological studies have found a significant amount of toxins in surface water, a complex link between animals' access to wastewater and associated animal and human welfare losses needs to be explored. The scarcity of safe water has put stress on the utilization of wastewater for crops and livestock production. The access of animals to wastewater is related to the emergence of dangerous animal's diseases, hampering productivity, increasing economic losses, and risking human health along the food chain. This review explores use of wastewater for agriculture, epidemiological evidence of microbial contamination in wastewater, and animal and human welfare disruption due to the use of wastewater for crop and livestock production. More specifically, the review delves into animals exposure to wastewater for bathing, drinking, or grazing on a pasture irrigated with contaminated water and related animal and human welfare losses. We included some scientific articles and reviews published from 1970 to 2017 to support our rational discussions. The selected articles dealt exclusively with animals direct access to wastewater via bathing and indirect access via grazing on pasture irrigated with contaminated wastewater and their implication for animal and human welfare losses. The study also identified that some policy options such as wastewater treatments, constructing wastewater stabilization ponds, controlling animal access to wastewater, and dissemination of necessary information to ultimate consumers related to the source of agricultural produce and wastewater use in animal and crop production are required to protect the human and animal health and welfare.


Subject(s)
Livestock , Wastewater , Agriculture , Animals , Crops, Agricultural , Humans
19.
Curr Protein Pept Sci ; 18(6): 636-651, 2017.
Article in English | MEDLINE | ID: mdl-27356938

ABSTRACT

Protein is an important yet the most expensive dietary component for farm ruminant animals. Understanding the mechanism behind protein utilization in animals for maintenance and milk production is critical for raising animals efficiently. Once the protein has been ingested, it undergoes various transformations in the gut before it is absorbed into blood and its precursors are harnessed by the mammary gland for milk protein synthesis in lactating animals. Several signaling pathways are involved both in absorption and in milk protein biosynthesis. Protein metabolism and signal pathway regulation in various tissues of ruminant are thus reviewed with emphasis on two particular tissues, the rumen and the mammary gland.


Subject(s)
Mammary Glands, Human/physiology , Proteins/metabolism , Rumen/physiology , Ruminants/physiology , Signal Transduction , Amino Acids/metabolism , Animals , Female , Humans , Lactation , Milk/metabolism , Milk Proteins/metabolism , Protein Biosynthesis , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...