Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
Mol Med Rep ; 30(5)2024 Nov.
Article in English | MEDLINE | ID: mdl-39301629

ABSTRACT

The advancement of tumor cell metastasis is significantly influenced by epithelial­to­mesenchymal transition (EMT), and metastasis is a prominent contributor to the mortality of patients diagnosed with colorectal cancer (CRC). AT­rich interactive domain­containing protein 1A (ARID1A), which acts as a tumor suppressor, frequently exhibits a loss­of­function mutation in metastatic CRC tissues. However, the underlying molecular mechanisms of ARID1A relating to EMT remain poorly understood. The present study aimed to clarify the association between ARID1A and EMT regulation in human CRC cells. The investigation into the loss of ARID1A expression in tissues from patients with CRC was performed using immunohistochemistry. Furthermore, ARID1A­overexpressing SW48 cells were established using lentiviruses carrying human full­length ARID1A. The results revealed that overexpression of ARID1A induced cellular morphological changes by promoting the tight junction molecule zonula occludens 1 (ZO­1) and the adherens junction molecule E­cadherin, whereas it decreased the intermediate filament protein vimentin. The results of reverse transcription­quantitative PCR also confirmed that ARID1A overexpression upregulated the mRNA expression levels of TJP1/ZO­1 and CDH1/E­cadherin, and downregulated VIM/vimentin and zinc finger E­box binding homeobox 1 expression, which are considered epithelial and mesenchymal markers, respectively. In addition, the overexpression of ARID1A in CRC cells resulted in a suppression of cell motility and migratory capabilities. The present study also demonstrated that the tumor suppressor ARID1A was commonly absent in CRC tissues. Notably, ARID1A overexpression could reverse the EMT­like phenotype and inhibit cell migration through alterations in EMT­related markers, leading to the inhibition of malignant progression. In conclusion, ARID1A may serve as a biomarker and therapeutic target in the clinical management of metastatic CRC.


Subject(s)
Cell Movement , Colorectal Neoplasms , DNA-Binding Proteins , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Transcription Factors , Humans , Epithelial-Mesenchymal Transition/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Cell Movement/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cell Line, Tumor , Male , Middle Aged , Female , Aged , Adult
2.
J Mol Histol ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39227510

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a global health concern with increasing prevalence. Mathurameha, a Thai herbal formula, has shown promising glucose-lowering effects and positive impacts on biochemical profiles in diabetic rats. The present study investigated the protective effects of Mathurameha on cardiovascular complications in high-fat diet/streptozotocin (HFD/STZ)-induced type 2 diabetic rats using histological and proteomic analyses. Thirty-five male Sprague-Dawley rats were divided into seven groups: normal diet (ND), ND with aqueous extract (ND + AE450), ND with ethanolic extract (ND + EE200), diabetes (DM), DM with AE (DM + AE450), DM with EE (DM + EE200), and DM with metformin (DM + Met). Mathurameha, especially at 200 mg/kg EE, significantly reduced adipocyte size, cardiac and vascular abnormalities, collagen deposition, and arterial wall thickness in DM rats. Proteomic analysis of rat aortas revealed 30 significantly altered proteins among the ND, DM, and DM + EE200 groups. These altered proteins are involved in various biological processes related to diabetes. Biochemical assays showed that Mathurameha reduced lipid peroxidation (MDA), increased antioxidant levels (GSH), and decreased the expression of inflammatory markers (ICAM1, TNF-α). In conclusion, Mathurameha exhibited significant protective effects against cardiovascular complications in HFD/STZ-induced type 2 diabetic rats through its antioxidant and anti-inflammatory properties.

3.
J Proteomics ; 306: 105263, 2024 08 30.
Article in English | MEDLINE | ID: mdl-39047940

ABSTRACT

Mathurameha is a traditional Thai herbal formula with a clinically proven effect of blood sugar reduction in patients with diabetes mellitus, but its anti-diabetic complication potential is largely unknown. This study aimed to elucidate the effects of Mathurameha and its underlying mechanisms against high glucose-induced endothelial dysfunction in human endothelial EA.hy926 cells. After confirming no cytotoxic effects, the cells were treated with normal glucose (NG), high glucose (HG), or high glucose plus Mathurameha (HG + M) for 24 h. A quantitative label-free proteomic analysis using the sequential window acquisition of all theoretical mass spectra (SWATH-MS) approach identified 24 differentially altered proteins among the three groups: 7 between HG and NG, 9 between HG + M and NG, and 13 between HG + M and HG. Bioinformatic analyses suggested a potential anti-diabetic action through the epidermal growth factor (EGF) pathway. Subsequent functional validations demonstrated that Mathurameha reduced the EGF secretion and the intracellular reactive oxygen species (ROS) level in high glucose-treated cells. Mathurameha also exhibited a stimulatory effect on nitric oxide (NO) production while significantly reducing the secretion of endothelin-1 (ET-1) and interleukin-1ß (IL-1ß) in high glucose-treated cells. In conclusion, our findings demonstrated that Mathurameha attenuated high glucose-induced endothelial dysfunction through the EGF/NO/IL-1ß regulatory axis. SIGNIFICANCE: This study reveals the potential of Mathurameha, a traditional Thai herbal formula, in mitigating high glucose-induced endothelial dysfunction, a common complication in diabetes mellitus. Using proteomics and bioinformatic analyses followed by functional validations, the present study highlights the protective effects of Mathurameha through the EGF/NO/IL-1ß regulatory axis. These findings support its potential use as a therapeutic intervention for diabetic vascular complications and provide valuable information for developing more effective anti-diabetic drugs.


Subject(s)
Epidermal Growth Factor , Glucose , Interleukin-1beta , Nitric Oxide , Proteomics , Humans , Nitric Oxide/metabolism , Glucose/pharmacology , Interleukin-1beta/metabolism , Epidermal Growth Factor/metabolism , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Cell Line , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism
4.
Oncol Lett ; 28(2): 392, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966585

ABSTRACT

The AT-rich interacting domain-containing protein 1A (ARID1A) is a tumor suppressor gene that has been implicated in several cancers, including colorectal cancer (CRC). The present study used a proteomic approach to elucidate the molecular mechanisms of ARID1A in CRC carcinogenesis. Stable ARID1A-overexpressing SW48 colon cancer cells were established using lentivirus transduction and the successful overexpression of ARID1A was confirmed by western blotting. Label-free quantitative proteomic analysis using liquid chromatography-tandem mass spectrometry identified 705 differentially altered proteins in the ARID1A-overexpressing cells, with 310 proteins significantly increased and 395 significantly decreased compared with empty vector control cells. Gene Ontology enrichment analysis highlighted the involvement of the altered proteins mainly in the Wnt signaling pathway. Western blotting supported these findings, as a decreased protein expression of Wnt target genes, including c-Myc, transcription factor T cell factor-1/7 and cyclin D1, were observed in ARID1A-overexpressing cells. Among the altered proteins involved in the Wnt signaling pathway, the interaction network analysis revealed that ARID1A exhibited a direct interaction with E3 ubiquitin-protein ligase zinc and ring finger 3 (ZNRF3), a negative regulator of the Wnt signaling pathway. Further analyses using the The Cancer Genome Atlas colon adenocarcinoma public dataset revealed that ZNRF3 expression significantly impacted the overall survival of patients with CRC and was positively correlated with ARID1A expression. Finally, an increased level of ZNRF3 in ARID1A-overexpressing cells was confirmed by western blotting. In conclusion, the findings of the present study suggest that ARID1A negatively regulates the Wnt signaling pathway through ZNRF3, which may contribute to CRC carcinogenesis.

5.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119736, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663552

ABSTRACT

The crosstalk between lung cancer cells and cancer-associated fibroblast (CAF) is pivotal in cancer progression. Heat shock protein family D member 1 (HSPD1) is a potential prognostic biomarker associated with the tumor microenvironment in lung adenocarcinoma (LUAD). However, the role of HSPD1 in CAF activation remains unclear. This study established stable HSPD1-knockdown A549 lung cancer cells using a lentivirus-mediated shRNA transduction. A targeted label-free proteomic analysis identified six significantly altered secretory proteins in the shHSPD1-A549 secretome compared to shControl-A549. Functional enrichment analysis highlighted their involvement in cell-to-cell communication and immune responses within the tumor microenvironment. Additionally, most altered proteins exhibited positive correlations and significant prognostic impacts on LUAD patient survival. Investigations on the effects of lung cancer secretomes on lung fibroblast WI-38 cells revealed that the shControl-A549 secretome stimulated fibroblast proliferation, migration, and CAF marker expression. These effects were reversed upon the knockdown of HSPD1 in A549 cells. Altogether, our findings illustrate the role of HSPD1 in mediating CAF induction through secretory proteins, potentially contributing to the progression and aggressiveness of lung cancer.


Subject(s)
Cancer-Associated Fibroblasts , Lung Neoplasms , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , A549 Cells , Cell Proliferation , Secretome/metabolism , Tumor Microenvironment , Gene Knockdown Techniques , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Proteomics/methods , Chaperonin 60 , Mitochondrial Proteins
6.
Cancer Biomark ; 39(3): 155-170, 2024.
Article in English | MEDLINE | ID: mdl-37694354

ABSTRACT

BACKGROUND: Lung adenocarcinoma (LUAD) is a major histological subtype of lung cancer with a high mortality rate worldwide. Heat shock protein family D member 1 (HSPD1, also known as HSP60) is reported to be increased in tumor tissues of lung cancer patients compared with healthy control tissues. OBJECTIVE: We aimed to investigate the roles of HSPD1 in prognosis, carcinogenesis, and immune infiltration in LUAD using an integrative bioinformatic analysis. METHODS: HSPD1 expression in LUAD was investigated in several transcriptome-based and protein databases. Survival analysis was performed using the KM plotter and OSluca databases, while prognostic significance was independently confirmed through univariate and multivariate analyses. Integrative gene interaction network and enrichment analyses of HSPD1-correlated genes were performed to investigate the roles of HSPD1 in LUAD carcinogenesis. TIMER and TISIDB were used to analyze correlation between HSPD1 expression and immune cell infiltration. RESULTS: The mRNA and protein expressions of HSPD1 were higher in LUAD compared with normal tissues. High HSPD1 expression was associated with male gender and LUAD with advanced stages. High HSPD1 expression was an independent prognostic factor associated with poor survival in LUAD patients. HSPD1-correlated genes with prognostic impact were mainly involved in aberrant ribosome biogenesis, while LUAD patients with high HSPD1 expression had low tumor infiltrations of activated and immature B cells and CD4+ T cells. CONCLUSIONS: HSPD1 may play a role in the regulation of ribosome biogenesis and B cell-mediated immunity in LUAD. It could serve as a predictive biomarker for prognosis and immunotherapy response in LUAD.


Subject(s)
Adenocarcinoma of Lung , Chaperonin 60 , Lung Neoplasms , Mitochondrial Proteins , Ribosomes , Humans , Male , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Carcinogenesis , Chaperonin 60/metabolism , Computational Biology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mitochondrial Proteins/metabolism , Prognosis , Ribosomes/metabolism
7.
J Allergy Clin Immunol Glob ; 2(2): 100095, 2023 May.
Article in English | MEDLINE | ID: mdl-37780800

ABSTRACT

To our knowledge, we present the first case report of allergic reaction from oyster mushroom ingestion, which was confirmed by an oral food challenge test. Trehalose phosphorylase was identified as a novel potential allergen by IgE immunoblotting and mass spectrometry.

8.
Genomics Inform ; 21(2): e22, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37423640

ABSTRACT

Kidney renal clear cell carcinoma (KIRC) is one of the most aggressive cancer type of the urinary system. Metastatic KIRC patients have poor prognosis and limited therapeutic options. Ankyrin 3 (ANK3) is a scaffold protein that plays important roles in maintaining physiological function of the kidney and its alteration is implicated in many cancers. In this study, we investigated differential expression of ANK3 in KIRC using GEPIA2, UALCAN, and HPA databases. Survival analysis was performed by GEPIA2, Kaplan-Meier plotter, and OSkirc databases. Genetic alterations of ANK3 in KIRC were assessed using cBioPortal database. Interaction network and functional enrichment analyses of ANK3-correlated genes in KIRC were performed using GeneMANIA and Shiny GO, respectively. Finally, the TIMER2.0 database was used to assess correlation between ANK3 expression and immune infiltration in KIRC. We found that ANK3 expression was significantly decreased in KIRC compared to normal tissues. The KIRC patients with low ANK3 expression had poorer survival outcomes than those with high ANK3 expression. ANK3 mutations were found in 2.4% of KIRC patients and were frequently co-mutated with several genes with a prognostic significance. ANK3-correlated genes were significantly enriched in various biological processes, mainly involved in peroxisome proliferator-activated receptor (PPAR) signaling pathway, in which positive correlations of ANK3 with PPARA and PPARG expressions were confirmed. Expression of ANK3 in KIRC was significantly correlated with infiltration level of B cell, CD8+ T cell, macrophage, and neutrophil. These findings suggested that ANK3 could serve as a prognostic biomarker and promising therapeutic target for KIRC.

9.
Genomics Inform ; 21(4): e46, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38224713

ABSTRACT

Colon adenocarcinoma (COAD) is the predominant type of colorectal cancer. Early diagnosis and treatment can significantly improve the prognosis of COAD patients. Anoctamin 7 (ANO7), an anion channel protein, has been implicated in prostate cancer and other types of cancer. In this study, we analyzed the expression of ANO7 and its correlation with clinicopathological characteristics among COAD patients using the Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and the University of Alabama at Birmingham CANcer (UALCAN) databases. The GEPIA2, Kaplan-Meier plotter, and the Survival Genie platform were employed for survival analysis. The co-expression network and potential function of ANO7 in COAD were analyzed using GeneFriends, the Database for Annotation, Visualization and Integrated Discovery (DAVID), GeneMANIA, and Pathway Studio. Our data analysis revealed a significant reduction in ANO7 expression levels within COAD tissues compared to normal tissues. Additionally, ANO7 expression was found to be associated with race and histological subtype. The COAD patients exhibiting low ANO7 expression had lower survival rates compared to those with high ANO7 expression. The genes correlated with ANO7 were significantly enriched in proteolysis and mucin type O-glycan biosynthesis pathway. Furthermore, ANO7 demonstrated a direct interaction and a positive co-expression correlation with mucin 2 (MUC2). In conclusion, our findings suggest that ANO7 might serve as a potential prognostic biomarker and potentially plays a role in proteolysis and mucin biosynthesis in the context of COAD.

10.
Structure ; 30(1): 156-171.e12, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34492227

ABSTRACT

R2TP is a highly conserved chaperone complex formed by two AAA+ ATPases, RUVBL1 and RUVBL2, that associate with PIH1D1 and RPAP3 proteins. R2TP acts in promoting macromolecular complex formation. Here, we establish the principles of R2TP assembly. Three distinct RUVBL1/2-based complexes are identified: R2TP, RUVBL1/2-RPAP3 (R2T), and RUVBL1/2-PIH1D1 (R2P). Interestingly, we find that PIH1D1 does not bind to RUVBL1/RUVBL2 in R2TP and does not function as a nucleotide exchange factor; instead, RPAP3 is found to be the central subunit coordinating R2TP architecture and linking PIH1D1 and RUVBL1/2. We also report that RPAP3 contains an intrinsically disordered N-terminal domain mediating interactions with substrates whose sequences are primarily enriched for Armadillo repeat domains and other helical-type domains. Our work provides a clear and consistent model of R2TP complex structure and gives important insights into how a chaperone machine concerned with assembly of folded proteins into multisubunit complexes might work.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Apoptosis Regulatory Proteins/metabolism , Carrier Proteins/metabolism , DNA Helicases/metabolism , Multiprotein Complexes/chemistry , ATPases Associated with Diverse Cellular Activities/chemistry , Apoptosis Regulatory Proteins/chemistry , Binding Sites , Carrier Proteins/chemistry , Chromatography, Gel , DNA Helicases/chemistry , Humans , Models, Molecular , Multiprotein Complexes/metabolism , Protein Conformation , Protein Domains , Protein Structure, Quaternary
11.
Sci Rep ; 10(1): 5843, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32246012

ABSTRACT

Mitochondrial dysfunction has been thought to play roles in the pathogenesis of diabetic nephropathy (DN). However, precise mechanisms underlying mitochondrial dysfunction in DN remained unclear. Herein, mitochondria were isolated from renal tubular cells after exposure to normal glucose (5.5 mM glucose), high glucose (25 mM glucose), or osmotic control (5.5 mM glucose + 19.5 mM mannitol) for 96 h. Comparative proteomic analysis revealed six differentially expressed proteins among groups that were subsequently identified by tandem mass spectrometry (nanoLC-ESI-ETD MS/MS) and confirmed by Western blotting. Several various types of post-translational modifications (PTMs) were identified in all of these identified proteins. Interestingly, phosphorylation and oxidation were most abundant in mitochondrial proteins whose levels were exclusively increased in high glucose condition. The high glucose-induced increases in phosphorylation and oxidation of mitochondrial proteins were successfully confirmed by various assays including MS/MS analyses. Moreover, high glucose also increased levels of phosphorylated ezrin, intracellular ATP and ROS, all of which could be abolished by a p38 MAPK inhibitor (SB239063), implicating a role of p38 MAPK-mediated phosphorylation in high glucose-induced mitochondrial dysfunction. These data indicate that phosphorylation and oxidation of mitochondrial proteins are, at least in part, involved in mitochondrial dysfunction in renal tubular cells during DN.


Subject(s)
Glucose/pharmacology , Kidney Tubules/drug effects , Mitochondrial Proteins/drug effects , Animals , Blotting, Western , Dogs , Kidney Tubules/metabolism , Madin Darby Canine Kidney Cells/drug effects , Madin Darby Canine Kidney Cells/metabolism , Mass Spectrometry , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Oxidation-Reduction/drug effects , Phosphoproteins/metabolism , Phosphorylation/drug effects , Proteomics/methods
12.
Anal Biochem ; 590: 113518, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31786226

ABSTRACT

Heat shock protein 90 (HSP90) plays essential roles in the normal physiology and comprises four distinct domains, including NH2-terminal (N), charged linker region (LR), middle (M), and COOH-terminal (C) domains, all of which regulate HSP90 biological functions. We reported herein detailed protocols to produce recombinant full-length (FL) and all these four domains of human HSP90 from Escherichia coli. cDNAs encoding FL, N, LR, M and C domains of human HSP90α were amplified and cloned into pET-32b(+) expression vector. All HSP90 constructs were expressed as soluble Trx-His-S tagged proteins after induction with 0.25 mM isopropyl-ß-d-thiogalactopyranoside (IPTG) at 18 °C overnight and further purified by affinity chromatography using nickel-nitrilotriacetic acid (Ni-NTA) resin. The enterokinase (EK) digestion was optimized for efficient cleavage of the Trx-His-S tag from each HSP90 construct by varying concentrations of EK (0.5-1 U) and urea (0-3 M). Each HSP90 construct was highly purified and approximately 0.1-1 mg proteins were obtained from 100 ml of bacterial culture. All the purified HSP90 constructs were successfully confirmed by tandem mass spectrometry (nanoLC-ESI-ETD MS/MS) and their secondary structure was quantified using attenuated total reflection - Fourier-transform infrared (ATR-FTIR) spectroscopy. Our expression and purification protocols would facilitate further structural and functional studies of human HSP90.


Subject(s)
HSP90 Heat-Shock Proteins/biosynthesis , Recombinant Proteins/biosynthesis , Cloning, Molecular , Escherichia coli/genetics , HSP90 Heat-Shock Proteins/isolation & purification , Humans , Protein Domains , Recombinant Proteins/isolation & purification
13.
Proteomics ; 17(17-18)2017 Sep.
Article in English | MEDLINE | ID: mdl-28664610

ABSTRACT

Recently, several studies employed various proteomic approaches to define diabetes-induced changes in renal proteins. However, functional significance of those datasets in diabetic nephropathy remained unclear. We thus performed integrative proteome network analysis of such datasets followed by various targeted functional studies in distal renal tubular cells treated with high glucose (HG) (25 mM) compared to normal glucose (NG) (5.5 mM) and NG + mannitol (M) (5.5 + 19.5 mM). The data showed that at 96 h when cell proliferation/death, tight junction protein and ß-/F-actin expression and organization, and transepithelial resistance remained unchanged, only HG caused increased levels of HSP90, HSP70, and HSP60, and increased accumulation of intracellular protein aggregates. In addition, HG also induced overproduction of intracellular ROS, decreased catalase level, increased level of oxidatively modified proteins, increased intracellular ATP level, and defective transepithelial Ca2+ transport. However, both HG and M increased the levels of ubiquitinated proteins. Taken together, this study demonstrated significant perturbations of distal renal tubular cells induced by HG based on targeted functional studies guided by integrative proteome network analysis. These data may, at least in part, lead to better understanding of the pathogenic mechanisms of diabetic nephropathy.


Subject(s)
Computational Biology/methods , Diabetic Nephropathies/pathology , Glucose/metabolism , Kidney Tubules/metabolism , Proteome/metabolism , Actins/metabolism , Animals , Cell Proliferation/drug effects , Diabetic Nephropathies/metabolism , Dogs , Kidney Tubules/drug effects , Madin Darby Canine Kidney Cells , Oxidative Stress/drug effects , Signal Transduction , Systems Integration
14.
Proteomics ; 17(15-16)2017 Aug.
Article in English | MEDLINE | ID: mdl-28627733

ABSTRACT

We have previously identified changes in the cellular proteome of renal tubular cells induced by low-dose (100 µg/mL) and high-dose (1000 µg/mL) calcium oxalate monohydrate (COM) and dihydrate (COD) crystals. However, the functional significance of such expression data remained unclear. In this study, we performed comparative analyses and functional investigations of four proteomic datasets to define potential mechanisms by which renal tubular cells responded to differential crystal types and doses. The data showed that high-dose induced greater changes than low-dose, whereas COM induced more changes than COD. Luciferin-luciferase ATP assay revealed increased intracellular ATP level by high-dose of both COM and COD. OxyBlot assay and Western blotting showed accumulated intracellular oxidized proteins but decreased ubiquitinated proteins by high-dose of both crystals. Flow cytometric analysis of cell death showed that high-dose of both crystals, particularly COM, significantly increased cell death. Also, crystal adhesion assay showed higher degree of cell-crystal adhesion in high-dose and COM when compared to low-dose and COD, respectively. Finally, pretreatment of epigallocatechin-3-gallate revealed a protective effect on COM/COD crystals-induced oxidative stress and cell-crystal adhesion. Collectively, these data may provide a better understanding of cellular responses of renal tubular cells to COM/COD crystals in kidney stone disease.


Subject(s)
Calcium Oxalate/chemistry , Calcium Oxalate/pharmacology , Kidney Tubules/metabolism , Protein Interaction Maps/drug effects , Proteome/analysis , Proteome/metabolism , Proteomics/methods , Animals , Antioxidants/pharmacology , Calcium Oxalate/classification , Catechin/analogs & derivatives , Catechin/pharmacology , Dogs , Kidney Tubules/cytology , Kidney Tubules/drug effects , Madin Darby Canine Kidney Cells , Oxidation-Reduction , Oxidative Stress/drug effects , Ubiquitination
15.
FASEB J ; 31(5): 2157-2167, 2017 05.
Article in English | MEDLINE | ID: mdl-28196897

ABSTRACT

Because underlying mechanisms of diabetic nephropathy/tubulopathy remained poorly understood, we aimed to define a key protein involving in hyperglycemia-induced renal tubular dysfunction. All altered renal proteins identified from previous large-scale proteome studies were subjected to global protein network analysis, which revealed heat shock protein 60 (HSP60, also known as HSPD1) as the central node of protein-protein interactions. Functional validation was performed using small interfering RNA (siRNA) to knock down HSP60 (siHSP60). At 48 h after exposure to high glucose (HG) (25 mM), Madin-Darby canine kidney (MDCK) renal tubular cells transfected with controlled siRNA (siControl) had significantly increased level of HSP60 compared to normal glucose (NG) (5.5 mM), whereas siHSP60-transfected cells showed a dramatically decreased HSP60 level. siHSP60 modestly increased intracellular protein aggregates in both NG and HG conditions. Luciferin-luciferase assay showed that HG modestly increased intracellular ATP, and siHSP60 further enhanced such an increase. OxyBlot assay showed significantly increased level of oxidized proteins in HG-treated siControl-transfected cells, whereas siHSP60 caused marked increase of oxidized proteins under the NG condition. However, the siHSP60-induced accumulation of oxidized proteins was abolished by HG. In summary, our data demonstrated that HSP60 plays roles in regulation of intracellular protein aggregation, ATP production, and oxidative stress in renal tubular cells. Its involvement in HG-induced tubular cell dysfunction was most likely via regulation of intracellular ATP production.-Aluksanasuwan, S., Sueksakit, K., Fong-ngern, K., Thongboonkerd, V. Role of HSP60 (HSPD1) in diabetes-induced renal tubular dysfunction: regulation of intracellular protein aggregation, ATP production, and oxidative stress.


Subject(s)
Adenosine Triphosphate/biosynthesis , Chaperonin 60/metabolism , Hyperglycemia/metabolism , Mitochondria/metabolism , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Animals , Cell Line , Cytoplasm/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/etiology , Diabetic Nephropathies/metabolism , Dogs , Kidney Tubules/physiopathology , Madin Darby Canine Kidney Cells/metabolism , RNA, Small Interfering/genetics
16.
Clin Chem Lab Med ; 55(7): 993-1002, 2017 Jun 27.
Article in English | MEDLINE | ID: mdl-27987354

ABSTRACT

BACKGROUND: Diurnal variations and physiologic changes of urinary proteome have been suggested in the urinary proteomics field. However, no clear evidence has been demonstrated. The present study thus aimed to define changes in urinary proteome by physiological stimuli, i.e. caffeine intake and excessive water drinking, both of which cause physiologic diuresis. METHODS: Urine samples were collected from 30 healthy individuals under three different conditions: (i) morning void as the control; (ii) after drinking a cup of coffee; and (iii) after drinking 1 L of water within 20 min. Thereafter, differentially excreted proteins were analyzed by 2-DE proteomics approach and validated by Western blotting and ELISA. RESULTS: Spot matching, quantitative intensity analysis, and ANOVA followed by Tukey's post-hoc multiple comparisons and the Bonferroni correction revealed significant differences in levels of five protein spots among three different conditions. These proteins were identified by quadrupole time-of-flight mass spectrometry (Q-TOF MS) and/or MS/MS analyses as kininogen 1 isoform 3, ß-actin, prostaglandin D synthase (PGDS), fibrinogen α-chain and immunoglobulin light chain. Among these, the decreased level of immunoglobulin was successfully validated by Western blotting and ELISA. CONCLUSIONS: These data indicated that caffeine intake and excessive water drinking could affect urinary excretion of some proteins and may affect urinary proteome analysis.


Subject(s)
Caffeine/pharmacology , Drinking , Proteome/drug effects , Urinalysis , Water/pharmacology , Adult , Artifacts , Dose-Response Relationship, Drug , Female , Humans , Male , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL