Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Chemosphere ; 351: 141133, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38199495

ABSTRACT

Microplastics and nanoplastics are found in marine biota across a wide range of trophic levels and environments. While a large portion of the information about plastic exposure comes from gastrointestinal (GI) data, the relevance of particle accumulation from an oral exposure compared with other types of exposure (e.g. dermal, respiratory) is unknown. To address this gap in knowledge, larval zebrafish (7 days post fertilization) were exposed to two different sizes of nanoplastics through either oral gavage or a waterborne exposure. Larvae were tracked for 48 h post exposure (hpe) to assess the migration and elimination of plastics. Larvae eliminated orally gavaged nanoplastics within 48 hpe. Oral gavage showed limited particle movement from the GI tract into other tissues. In contrast, waterborne nanoplastic-exposed larvae displayed notable fluorescence in tissues outside of the GI tract. The 50 nm waterborne-exposed larvae retained the particles past 48 hpe, and showed accumulation with neuromasts. For both sizes of plastic particles, the nanoplastics were eliminated from non-GI tract tissues by 24 hpe. Our results suggest that waterborne exposure leads to greater accumulation of plastic in comparison to oral exposure, suggesting that plastic accumulation in certain tissues is greater via routes of exposure other than oral consumption.


Subject(s)
Plastics , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Microplastics/metabolism , Zebrafish/metabolism , Bioaccumulation , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Larva/metabolism
2.
Environ Sci Technol ; 57(21): 7966-7977, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37186871

ABSTRACT

Sunlight transforms plastic into water-soluble products, the potential toxicity of which remains unresolved, particularly for vertebrate animals. We evaluated acute toxicity and gene expression in developing zebrafish larvae after 5 days of exposure to photoproduced (P) and dark (D) leachates from additive-free polyethylene (PE) film and consumer-grade, additive-containing, conventional, and recycled PE bags. Using a "worst-case" scenario, with plastic concentrations exceeding those found in natural waters, we observed no acute toxicity. However, at the molecular level, RNA sequencing revealed differences in the number of differentially expressed genes (DEGs) for each leachate treatment: thousands of genes (5442 P, 577 D) for the additive-free film, tens of genes for the additive-containing conventional bag (14 P, 7 D), and none for the additive-containing recycled bag. Gene ontology enrichment analyses suggested that the additive-free PE leachates disrupted neuromuscular processes via biophysical signaling; this was most pronounced for the photoproduced leachates. We suggest that the fewer DEGs elicited by the leachates from conventional PE bags (and none from recycled bags) could be due to differences in photoproduced leachate composition caused by titanium dioxide-catalyzed reactions not present in the additive-free PE. This work demonstrates that the potential toxicity of plastic photoproducts can be product formulation-specific.


Subject(s)
Polyethylene , Water Pollutants, Chemical , Animals , Polyethylene/toxicity , Zebrafish , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Plastics/toxicity , Water
3.
Sci Rep ; 13(1): 2587, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36788234

ABSTRACT

Harmful algal blooms (HABs) produce neurotoxins that affect human health. Developmental exposure of zebrafish embryos to the HAB toxin domoic acid (DomA) causes myelin defects, loss of reticulospinal neurons, and behavioral deficits. However, it is unclear whether DomA primarily targets myelin sheaths, leading to the loss of reticulospinal neurons, or reticulospinal neurons, causing myelin defects. Here, we show that while exposure to DomA at 2 dpf did not reduce the number of oligodendrocyte precursors prior to myelination, it led to fewer myelinating oligodendrocytes that produced shorter myelin sheaths and aberrantly wrapped neuron cell bodies. DomA-exposed larvae lacked Mauthner neurons prior to the onset of myelination, suggesting that axonal loss is not secondary to myelin defects. The loss of the axonal targets may have led oligodendrocytes to inappropriately myelinate neuronal cell bodies. Consistent with this, GANT61, a GLI1/2 inhibitor that reduces oligodendrocyte number, caused a reduction in aberrantly myelinated neuron cell bodies in DomA-exposed fish. Together, these results suggest that DomA initially alters reticulospinal neurons and the loss of axons causes aberrant myelination of nearby cell bodies. The identification of initial targets and perturbed cellular processes provides a mechanistic understanding of how DomA alters neurodevelopment, leading to structural and behavioral phenotypes.


Subject(s)
Neurons , Zebrafish , Animals , Humans , Zebrafish/physiology , Animals, Genetically Modified , Neurons/physiology , Myelin Sheath/physiology , Axons/physiology , Oligodendroglia/physiology , Spinal Cord
4.
Aquat Toxicol ; 252: 106310, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36198224

ABSTRACT

Domoic acid (DA) is a naturally produced neurotoxin synthesized by marine diatoms in the genus Pseudo-nitzschia. DA accumulates in filter-feeders such as shellfish, and can cause severe neurotoxicity when contaminated seafood is ingested, resulting in Amnesic Shellfish Poisoning (ASP) in humans. Overt clinical signs of neurotoxicity include seizures and disorientation. ASP is a significant public health concern, and though seafood regulations have effectively minimized the human risk of severe acute DA poisoning, the effects of exposure at asymptomatic levels are poorly understood. The objective of this study was to determine the effects of exposure to symptomatic and asymptomatic doses of DA on gene expression patterns in the zebrafish brain. We exposed adult zebrafish to either a symptomatic (1.1 ± 0.2 µg DA/g fish) or an asymptomatic (0.31 ± 0.03 µg DA/g fish) dose of DA by intracelomic injection and sampled at 24, 48 and 168 h post-injection. Transcriptional profiling was done using Agilent and Affymetrix microarrays. Our analysis revealed distinct, non-overlapping changes in gene expression between the two doses. We found that the majority of transcriptional changes were observed at 24 h post-injection with both doses. Interestingly, asymptomatic exposure produced more persistent transcriptional effects - in response to symptomatic dose exposure, we observed only one differentially expressed gene one week after exposure, compared to 26 in the asymptomatic dose at the same time (FDR <0.05). GO term analysis revealed that symptomatic DA exposure affected genes associated with peptidyl proline modification and retinoic acid metabolism. Asymptomatic exposure caused differential expression of genes that were associated with GO terms including circadian rhythms and visual system, and also the neuroactive ligand-receptor signaling KEGG pathway. Overall, these results suggest that transcriptional responses are specific to the DA dose and that asymptomatic exposure can cause long-term changes. Further studies are needed to characterize the potential downstream neurobehavioral impacts of DA exposure.


Subject(s)
Diatoms , Water Pollutants, Chemical , Animals , Humans , Zebrafish/genetics , Neurotoxins/toxicity , Ligands , Water Pollutants, Chemical/toxicity , Kainic Acid/toxicity , Brain , Diatoms/genetics , Gene Expression , Tretinoin/pharmacology , Proline
5.
Toxicol Sci ; 188(1): 75-87, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35477799

ABSTRACT

Exposure to environmental toxicants during preconception has been shown to affect offspring health and epigenetic mechanisms such as DNA methylation are hypothesized to be involved in adverse outcomes. However, studies addressing the effects of exposure to environmental toxicants during preconception on epigenetic changes in gametes are limited. The objective of this study is to determine the effect of preconceptional exposure to a dioxin-like polychlorinated biphenyl (3,3',4,4',5-pentachlorobiphenyl [PCB126]) on DNA methylation and gene expression in testis. Adult zebrafish were exposed to 3 and 10 nM PCB126 for 24 h and testis tissue was sampled at 7 days postexposure for histology, DNA methylation, and gene expression profiling. Reduced representation bisulfite sequencing revealed 37 and 92 differentially methylated regions (DMRs) in response to 3 and 10 nM PCB126 exposures, respectively. Among them, 19 DMRs were found to be common between both PCB126 treatment groups. Gene ontology (GO) analysis of DMRs revealed that enrichment of terms such as RNA processing, iron-sulfur cluster assembly, and gluconeogenesis. Gene expression profiling showed differential expression of 40 and 1621 genes in response to 3 and 10 nM PCB126 exposures, respectively. GO analysis of differentially expressed genes revealed enrichment of terms related to xenobiotic metabolism, oxidative stress, and immune function. There is no overlap in the GO terms or individual genes between DNA methylation and RNA sequencing results, but functionally many of the altered pathways have been shown to cause spermatogenic defects.


Subject(s)
Polychlorinated Biphenyls , Zebrafish , Animals , DNA , DNA Methylation , Male , Polychlorinated Biphenyls/toxicity , Testis , Zebrafish/genetics
6.
Ecol Evol ; 11(23): 16776-16785, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34938472

ABSTRACT

Characterizing the capacity of marine organisms to adapt to climate change related drivers (e.g., pCO2 and temperature), and the possible rate of this adaptation, is required to assess their resilience (or lack thereof) to these drivers. Several studies have hypothesized that epigenetic markers such as DNA methylation, histone modifications and noncoding RNAs, act as drivers of adaptation in marine organisms, especially corals. However, this hypothesis has not been tested in zooplankton, a keystone organism in marine food webs. The objective of this study is to test the hypothesis that acute ocean acidification (OA) exposure alters DNA methylation in two zooplanktonic species-copepods (Acartia clausii) and cladocerans (Evadne nordmanii). We exposed these two species to near-future OA conditions (400 and 900 ppm pCO2) for 24 h and assessed transcriptional and DNA methylation patterns using RNA sequencing and Reduced Representation Bisulfite Sequencing (RRBS). OA exposure caused differential expression of genes associated with energy metabolism, cytoskeletal and extracellular matrix functions, hypoxia and one-carbon metabolism. Similarly, OA exposure also caused altered DNA methylation patterns in both species but the effect of these changes on gene expression and physiological effects remains to be determined. The results from this study form the basis for studies investigating the potential role of epigenetic mechanisms in OA induced phenotypic plasticity and/or adaptive responses in zooplanktonic organisms.

7.
Toxicol Sci ; 182(2): 310-326, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34097058

ABSTRACT

Harmful algal blooms produce potent neurotoxins that accumulate in seafood and are hazardous to human health. Developmental exposure to the harmful algal bloom toxin, domoic acid (DomA), has behavioral consequences well into adulthood, but the cellular and molecular mechanisms of DomA developmental neurotoxicity are largely unknown. To assess these, we exposed zebrafish embryos to DomA during the previously identified window of susceptibility and used the well-known startle response circuit as a tool to identify specific neuronal components that are targeted by exposure to DomA. Exposure to DomA reduced startle responsiveness to both auditory/vibrational and electrical stimuli, and even at the highest stimulus intensities tested, led to a dramatic reduction of one type of startle (short-latency c-starts). Furthermore, DomA-exposed larvae had altered kinematics for both types of startle responses tested, exhibiting shallower bend angles and slower maximal angular velocities. Using vital dye staining, immunolabeling, and live imaging of transgenic lines, we determined that although the sensory inputs were intact, the reticulospinal neurons required for short-latency c-starts were absent in most DomA-exposed larvae. Furthermore, axon tracing revealed that DomA-treated larvae also showed significantly reduced primary motor neuron axon collaterals. Overall, these results show that developmental exposure to DomA targets large reticulospinal neurons and motor neuron axon collaterals, resulting in measurable deficits in startle behavior. They further provide a framework for using the startle response circuit to identify specific neural populations disrupted by toxins or toxicants and to link these disruptions to functional consequences for neural circuit function and behavior.


Subject(s)
Reflex, Startle , Zebrafish , Adult , Animals , Humans , Kainic Acid/analogs & derivatives , Kainic Acid/toxicity , Neurons
8.
Toxicol Sci ; 182(1): 44-59, 2021 07 16.
Article in English | MEDLINE | ID: mdl-33892503

ABSTRACT

Human consumption of cannabinoid-containing products during early life or pregnancy is rising. However, information about the molecular mechanisms involved in early life stage Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) toxicities is critically lacking. Here, larval zebrafish (Danio rerio) were used to measure THC- and CBD-mediated changes on transcriptome and the roles of cannabinoid receptors (Cnr) 1 and 2 and peroxisome proliferator activator receptor γ (PPARγ) in developmental toxicities. Transcriptomic profiling of 96-h postfertilization (hpf) cnr+/+ embryos exposed (6 - 96 hpf) to 4 µM THC or 0.5 µM CBD showed differential expression of 904 and 1095 genes for THC and CBD, respectively, with 360 in common. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in the THC and CBD datasets included those related to drug, retinol, and steroid metabolism and PPAR signaling. The THC exposure caused increased mortality and deformities (pericardial and yolk sac edemas, reduction in length) in cnr1-/- and cnr2-/- fish compared with cnr+/+ suggesting Cnr receptors are involved in protective pathways. Conversely, the cnr1-/- larvae were more resistant to CBD-induced malformations, mortality, and behavioral alteration implicating Cnr1 in CBD-mediated toxicity. Behavior (decreased distance travelled) was the most sensitive endpoint to THC and CBD exposure. Coexposure to the PPARγ inhibitor GW9662 and CBD in cnr+/+ and cnr2-/- strains caused more adverse outcomes compared with CBD alone, but not in the cnr1-/- fish, suggesting that PPARγ plays a role in CBD metabolism downstream of Cnr1. Collectively, PPARγ, Cnr1, and Cnr2 play important roles in the developmental toxicity of cannabinoids with Cnr1 being the most critical.


Subject(s)
Cannabidiol , Animals , Cannabidiol/toxicity , Dronabinol/toxicity , Humans , Peroxisome Proliferator-Activated Receptors/genetics , Receptors, Cannabinoid , Transcriptome , Zebrafish/genetics
9.
Environ Toxicol Chem ; 40(6): 1639-1648, 2021 06.
Article in English | MEDLINE | ID: mdl-33590914

ABSTRACT

Since the phasing out and eventual ban on the production of organohalogen flame retardants, the use of organophosphate flame retardants (OPFRs) has increased rapidly. This has led to the detection of OPFRs in various environments including the Arctic. Two of the most prevalent OPFRs found in the Arctic are tris(2-chloroisopropyl) phosphate (TCPP), and 2-ethylhexyl diphenyl phosphate (EHDPP). The impacts of exposure to OPFRs on Arctic organisms is poorly understood. The objective of the present study was to determine the effects of exposure to TCPP, EHDPP, and a mixture of OPFRs on gene expression patterns in Atlantic cod, Gadus morhua. Precision-cut liver slices from Atlantic cod in vitro were exposed to either TCPP or EHDPP alone or in a mixture and sampled at 2 different time points to quantify gene expression patterns using RNA sequencing. We exposed the liver slices to 2 concentrations of TCPP and EHDPP, one of which was chosen based on the levels found in the Arctic environment. The RNA sequencing results demonstrated differential expression of hundreds of genes in response to exposure. The genes representing cholesterol biosynthesis and lipid metabolism pathway were significantly enriched in all the treatment groups. Almost all the cholesterol biosynthesis genes were significantly down-regulated in response to OPFR exposure. The effects on these pathways could involve various physiological processes including reproduction, growth, and behavior as well as adaptation to changing temperatures. Membrane fluidity is an important adaptive mechanism among aquatic organisms. Altered cholesterol homeostasis could have long-term consequences by altering the adaptive potential of aquatic organisms to changing water temperatures, particularly those living in polar environments. These results suggest that OPFRs could have unique effects on the organisms living in the Arctic compared with other environments. Further studies are needed to understand the long-term impacts of exposure to environmentally realistic concentrations using laboratory and field-based studies. Environ Toxicol Chem 2021;40:1639-1648. © 2021 SETAC.


Subject(s)
Flame Retardants , Gadus morhua , Animals , Cholesterol , Flame Retardants/toxicity , Gadus morhua/genetics , Gene Expression Profiling , Lipid Metabolism , Liver , Organophosphates
10.
Toxicol Sci ; 179(1): 84-94, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33064826

ABSTRACT

Chemical modifications of proteins, DNA, and RNA moieties play critical roles in regulating gene expression. Emerging evidence suggests the RNA modifications (epitranscriptomics) have substantive roles in basic biological processes. One of the most common modifications in mRNA and noncoding RNAs is N6-methyladenosine (m6A). In a subset of mRNAs, m6A sites are preferentially enriched near stop codons, in 3' UTRs, and within exons, suggesting an important role in the regulation of mRNA processing and function including alternative splicing and gene expression. Very little is known about the effect of environmental chemical exposure on m6A modifications. As many of the commonly occurring environmental contaminants alter gene expression profiles and have detrimental effects on physiological processes, it is important to understand the effects of exposure on this important layer of gene regulation. Hence, the objective of this study was to characterize the acute effects of developmental exposure to PCB126, an environmentally relevant dioxin-like PCB, on m6A methylation patterns. We exposed zebrafish embryos to PCB126 for 6 h starting from 72 h post fertilization and profiled m6A RNA using methylated RNA immunoprecipitation followed by sequencing (MeRIP-seq). Our analysis revealed 117 and 217 m6A peaks in the DMSO and PCB126 samples (false discovery rate 5%), respectively. The majority of the peaks were preferentially located around the 3' UTR and stop codons. Statistical analysis revealed 15 m6A marked transcripts to be differentially methylated by PCB126 exposure. These include transcripts that are known to be activated by AHR agonists (eg, ahrra, tiparp, nfe2l2b) as well as others that are important for normal development (vgf, cebpd, sned1). These results suggest that environmental chemicals such as dioxin-like PCBs could affect developmental gene expression patterns by altering m6A levels. Further studies are necessary to understand the functional consequences of exposure-associated alterations in m6A levels.


Subject(s)
Polychlorinated Biphenyls , Animals , Methylation , Polychlorinated Biphenyls/toxicity , RNA/metabolism , Transcriptome , Zebrafish/genetics , Zebrafish/metabolism
11.
Environ Health Perspect ; 128(11): 117002, 2020 11.
Article in English | MEDLINE | ID: mdl-33147070

ABSTRACT

BACKGROUND: Harmful algal blooms (HABs) produce potent neurotoxins that threaten human health, but current regulations may not be protective of sensitive populations. Early life exposure to low levels of the HAB toxin domoic acid (DomA) produces long-lasting behavioral deficits in rodent and primate models; however, the mechanisms involved are unknown. The zebrafish is a powerful in vivo vertebrate model system for exploring cellular processes during development and thus may help to elucidate mechanisms of DomA developmental neurotoxicity. OBJECTIVES: We used the zebrafish model to investigate how low doses of DomA affect the developing nervous system, including windows of susceptibility to DomA exposure, structural and molecular changes in the nervous system, and the link to behavioral alterations. METHODS: To identify potential windows of susceptibility, DomA (0.09-0.18 ng) was delivered to zebrafish through caudal vein microinjection during distinct periods in early neurodevelopment. Following exposure, structural and molecular targets were identified using live imaging of transgenic fish and RNA sequencing. To assess the functional consequences of exposures, we quantified startle behavior in response to acoustic/vibrational stimuli. RESULTS: Larvae exposed to DomA at 2 d postfertilization (dpf), but not at 1 or 4 dpf, showed consistent deficits in startle behavior at 7 dpf, including lower responsiveness and altered kinematics. Similarly, myelination in the spinal cord was disorganized after exposure at 2 dpf but not 1 or 4 dpf. Time-lapse imaging revealed disruption of the initial stages of myelination. DomA exposure at 2 dpf down-regulated genes required for maintaining myelin structure and the axonal cytoskeleton. DISCUSSION: These results in zebrafish reveal a developmental window of susceptibility to DomA-induced behavioral deficits and identify altered gene expression and disrupted myelin structure as possible mechanisms. The results establish a zebrafish model for investigating the mechanisms of developmental DomA toxicity, including effects with potential relevance to exposed sensitive human populations. https://doi.org/10.1289/EHP6652.


Subject(s)
Behavior, Animal/drug effects , Kainic Acid/analogs & derivatives , Nervous System/drug effects , Water Pollutants, Chemical/toxicity , Animals , Harmful Algal Bloom , Kainic Acid/toxicity , Neurotoxicity Syndromes/veterinary , Zebrafish/physiology
12.
Toxicol Sci ; 173(1): 41-52, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31621872

ABSTRACT

Polychlorinated biphenyls (PCBs) are highly persistent and ubiquitously distributed environmental pollutants. Based on their chemical structure, PCBs are classified into non-ortho-substituted and ortho-substituted congeners. Non-ortho-substituted PCBs are structurally similar to dioxin and their toxic effects and mode of action are well-established. In contrast, very little is known about the effects of ortho-substituted PCBs, particularly, during early development. The objective of this study is to investigate the effects of exposure to an environmentally prominent ortho-substituted PCB (2,2',4,4',5,5'-hexachlorobiphenyl; PCB153) on zebrafish embryos. We exposed zebrafish embryos to 3 different concentrations of PCB153 starting from 4 to 120 hours post-fertilization (hpf). We quantified gross morphological changes, behavioral phenotypes, gene expression changes, and circadian behavior in the larvae. There were no developmental defects during the exposure period, but starting at 7 dpf, we observed spinal deformity in the 10 µM PCB153 treated group. A total of 633, 2227, and 3378 differentially expressed genes were observed in 0.1 µM (0.036 µg/ml), 1 µM (0.36 µg/ml), and 10 µM (3.6 µg/ml) PCB153-treated embryos, respectively. Of these, 301 genes were common to all treatment groups. KEGG pathway analysis revealed enrichment of genes related to circadian rhythm, FoxO signaling, and insulin resistance pathways. Behavioral analysis revealed that PCB153 exposure significantly alters circadian behavior. Disruption of circadian rhythms has been associated with the development of metabolic and neurological diseases. Thus, understanding the mechanisms of action of environmental chemicals in disrupting metabolism and other physiological processes is essential.


Subject(s)
Circadian Rhythm/drug effects , Environmental Pollutants/toxicity , Polychlorinated Biphenyls/toxicity , Animals , Dose-Response Relationship, Drug , Embryo, Nonmammalian , Gene Expression , Polychlorinated Dibenzodioxins/toxicity , Zebrafish/embryology
13.
Natl Sci Rev ; 6(5): 993-1003, 2019 Oct.
Article in English | MEDLINE | ID: mdl-34691960

ABSTRACT

Major evolutionary transitions are enigmas, and the most notable enigma is between invertebrates and vertebrates, with numerous spectacular innovations. To search for the molecular connections involved, we asked whether global epigenetic changes may offer a clue by surveying the inheritance and reprogramming of parental DNA methylation across metazoans. We focused on gametes and early embryos, where the methylomes are known to evolve divergently between fish and mammals. Here, we find that methylome reprogramming during embryogenesis occurs neither in pre-bilaterians such as cnidarians nor in protostomes such as insects, but clearly presents in deuterostomes such as echinoderms and invertebrate chordates, and then becomes more evident in vertebrates. Functional association analysis suggests that DNA methylation reprogramming is associated with development, reproduction and adaptive immunity for vertebrates, but not for invertebrates. Interestingly, the single HOX cluster of invertebrates maintains unmethylated status in all stages examined. In contrast, the multiple HOX clusters show dramatic dynamics of DNA methylation during vertebrate embryogenesis. Notably, the methylation dynamics of HOX clusters are associated with their spatiotemporal expression in mammals. Our study reveals that DNA methylation reprogramming has evolved dramatically during animal evolution, especially after the evolutionary transitions from invertebrates to vertebrates, and then to mammals.

14.
Aquat Toxicol ; 205: 114-122, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30368057

ABSTRACT

Atlantic killifish inhabiting polluted sites along the east coast of the U.S. have evolved resistance to toxic effects of contaminants. One such contaminated site is the Acushnet River estuary, near New Bedford Harbor (NBH), Massachusetts, which is characterized by very high PCB concentrations in the sediments and in the tissues of resident killifish. Though killifish at this site appear to be thriving, the metabolic costs of survival in a highly contaminated environment are not well understood. In this study we compared the hepatic metabolite profiles of resistant (NBH) and sensitive populations (Scorton Creek (SC), Sandwich, MA) using a targeted metabolomics approach in which polar metabolites were extracted from adult fish livers and quantified. Our results revealed differences in the levels of several metabolites between fish from the two sites. The majority of these metabolites are associated with one-carbon metabolism, an important pathway that supports multiple physiological processes including DNA and protein methylation, nucleic acid biosynthesis and amino acid metabolism. We measured the gene expression of DNA methylation (DNA methyltransferase 1, dnmt1) and demethylation genes (Ten-Eleven Translocation (TET) genes) in the two populations, and observed lower levels of dnmt1 and higher levels of TET gene expression in the NBH livers, suggesting possible differences in DNA methylation profiles. Consistent with this, the two populations differed significantly in the levels of 5-methylcytosine and 5-hydroxymethylcytosine nucleotides. Overall, our results suggest that the unique hepatic metabolite signatures observed in NBH and SC reflect the adaptive mechanisms for survival in their respective habitats.


Subject(s)
Adaptation, Physiological/genetics , Fundulidae/genetics , Fundulidae/metabolism , Liver/chemistry , Animals , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA Methylation , Gene Expression Regulation , Liver/drug effects , Liver/enzymology , Massachusetts , Polychlorinated Biphenyls/toxicity , Water Pollutants, Chemical/toxicity
15.
Environ Epigenet ; 4(1): dvy005, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29686887

ABSTRACT

There is growing evidence that environmental toxicants can affect various physiological processes by altering DNA methylation patterns. However, very little is known about the impact of toxicant-induced DNA methylation changes on gene expression patterns. The objective of this study was to determine the genome-wide changes in DNA methylation concomitant with altered gene expression patterns in response to 3, 3', 4, 4', 5-pentachlorobiphenyl (PCB126) exposure. We used PCB126 as a model environmental chemical because the mechanism of action is well-characterized, involving activation of aryl hydrocarbon receptor, a ligand-activated transcription factor. Adult zebrafish were exposed to 10 nM PCB126 for 24 h (water-borne exposure) and brain and liver tissues were sampled at 7 days post-exposure in order to capture both primary and secondary changes in DNA methylation and gene expression. We used enhanced Reduced Representation Bisulfite Sequencing and RNAseq to quantify DNA methylation and gene expression, respectively. Enhanced reduced representation bisulfite sequencing analysis revealed 573 and 481 differentially methylated regions in the liver and brain, respectively. Most of the differentially methylated regions are located more than 10 kilobases upstream of transcriptional start sites of the nearest neighboring genes. Gene Ontology analysis of these genes showed that they belong to diverse physiological pathways including development, metabolic processes and regeneration. RNAseq results revealed differential expression of genes related to xenobiotic metabolism, oxidative stress and energy metabolism in response to polychlorinated biphenyl exposure. There was very little correlation between differentially methylated regions and differentially expressed genes suggesting that the relationship between methylation and gene expression is dynamic and complex, involving multiple layers of regulation.

16.
Curr Opin Toxicol ; 6: 26-33, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29202112

ABSTRACT

Zebrafish have been extensively used for studying vertebrate development and modeling human diseases such as cancer. In the last two decades, they have also emerged as an important model for developmental toxicology research and, more recently, for studying the developmental origins of health and disease (DOHaD). It is widely recognized that epigenetic mechanisms mediate the persistent effects of exposure to chemicals during sensitive windows of development. There is considerable interest in understanding the epigenetic mechanisms associated with DOHaD using zebrafish as a model system. This review summarizes our current knowledge on the effects of environmental chemicals on DNA methylation, histone modifications and noncoding RNAs in the context of DOHaD, and suggest some key considerations in designing experiments for characterizating the mechanisms of action.

17.
Toxicol Sci ; 160(2): 386-397, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28973690

ABSTRACT

Early life exposure to environmental chemicals can have long-term consequences that are not always apparent until later in life. We recently demonstrated that developmental exposure of zebrafish to low, nonembryotoxic levels of 3,3',4,4',5-pentachlorobiphenyl (PCB126) did not affect larval behavior, but caused changes in adult behavior. The objective of this study was to investigate the underlying molecular basis for adult behavioral phenotypes resulting from early life exposure to PCB126. We exposed zebrafish embryos to PCB126 during early development and measured transcriptional profiles in whole embryos, larvae and adult male brains using RNA-sequencing. Early life exposure to 0.3 nM PCB126 induced cyp1a transcript levels in 2-dpf embryos, but not in 5-dpf larvae, suggesting transient activation of aryl hydrocarbon receptor with this treatment. No significant induction of cyp1a was observed in the brains of adults exposed as embryos to PCB126. However, a total of 2209 and 1628 genes were differentially expressed in 0.3 and 1.2 nM PCB126-exposed groups, respectively. KEGG pathway analyses of upregulated genes in the brain suggest enrichment of calcium signaling, MAPK and notch signaling, and lysine degradation pathways. Calcium is an important signaling molecule in the brain and altered calcium homeostasis could affect neurobehavior. The downregulated genes in the brain were enriched with oxidative phosphorylation and various metabolic pathways, suggesting that the metabolic capacity of the brain is impaired. Overall, our results suggest that PCB exposure during sensitive periods of early development alters normal development of the brain by reprogramming gene expression patterns, which may result in alterations in adult behavior.


Subject(s)
Brain/drug effects , Cellular Reprogramming/drug effects , Environmental Pollutants/toxicity , Polychlorinated Biphenyls/toxicity , Receptors, Aryl Hydrocarbon/agonists , Zebrafish Proteins/agonists , Age Factors , Animals , Aryl Hydrocarbon Hydroxylases/genetics , Aryl Hydrocarbon Hydroxylases/metabolism , Behavior, Animal/drug effects , Brain/growth & development , Brain/metabolism , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Gene Expression Regulation , Gene Regulatory Networks , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Time Factors , Transcriptome , Zebrafish/embryology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
18.
Neurotoxicology ; 52: 134-43, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26616910

ABSTRACT

Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants. The most toxic PCBs are the non-ortho-substituted ("dioxin-like") congeners that act through the aryl hydrocarbon receptor (AHR) pathway. In humans, perinatal exposure to dioxin-like PCBs is associated with neurodevelopmental toxicity in children. Yet, the full potential for later-life neurobehavioral effects that result from early-life low level exposure to dioxin-like PCBs is not well understood. The objective of this study was to determine the effects of developmental exposure to low levels of dioxin-like PCBs on early- and later-life behavioral phenotypes using zebrafish as a model system. We exposed zebrafish embryos to either vehicle (DMSO) or low concentrations of PCB126 (0.3, 0.6, 1.2nM) for 20h (4-24h post fertilization), and then reared them to adulthood in clean water. Locomotor activity was tested at two larval stages (7 and 14 days post fertilization). Adult fish were tested for anxiety-related behavior using the novel tank and shoaling assays. Adult behavioral assays were repeated several times on the same group of fish and effects on intra- and inter-trial habituation were determined. While there was no effect of PCB126 on larval locomotor activity in response to changes in light conditions, developmental exposure to PCB126 resulted in impaired short- and long-term habituation to a novel environment in adult zebrafish. Cyp1a induction was measured as an indicator for AHR activation. Despite high induction at early stages, cyp1a expression was not induced in the brains of developmentally exposed adult fish that showed altered behavior, suggesting that AHR was not activated at this stage. Our results demonstrate the effectiveness of the zebrafish model in detecting subtle and delayed behavioral effects resulting from developmental exposure to an environmental contaminant.


Subject(s)
Behavior, Animal/drug effects , Polychlorinated Biphenyls/toxicity , Receptors, Aryl Hydrocarbon/agonists , Zebrafish , Animals , Brain/metabolism , Dose-Response Relationship, Drug , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Habituation, Psychophysiologic/drug effects , Larva/drug effects , Larva/metabolism , Locomotion/drug effects
19.
Toxicol Appl Pharmacol ; 284(2): 142-51, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25732252

ABSTRACT

DNA methylation is one of the most important epigenetic modifications involved in the regulation of gene expression. The DNA methylation reaction is catalyzed by DNA methyltransferases (DNMTs). Recent studies have demonstrated that toxicants can affect normal development by altering DNA methylation patterns, but the mechanisms of action are poorly understood. Hence, we tested the hypothesis that developmental exposure to TCDD affects dnmt gene expression patterns. Zebrafish embryos were exposed to 5nM TCDD for 1h from 4 to 5h post-fertilization (hpf) and sampled at 12, 24, 48, 72, and 96 hpf to determine dnmt gene expression and DNA methylation patterns. We performed a detailed analysis of zebrafish dnmt gene expression during development and in adult tissues. Our results demonstrate that dnmt3b genes are highly expressed in early stages of development, and dnmt3a genes are more abundant in later stages. TCDD exposure upregulated dnmt1 and dnmt3b2 expression, whereas dnmt3a1, 3b1, and 3b4 are downregulated following exposure. We did not observe any TCDD-induced differences in global methylation or hydroxymethylation levels, but the promoter methylation of aryl hydrocarbon receptor (AHR) target genes was altered. In TCDD-exposed embryos, AHR repressor a (ahrra) and c-fos promoters were differentially methylated. To characterize the TCDD effects on DNMTs, we cloned the dnmt promoters with xenobiotic response elements and conducted AHR transactivation assays using a luciferase reporter system. Our results suggest that ahr2 can regulate dnmt3a1, dnmt3a2, and dnmt3b2 expression. Overall, we demonstrate that developmental exposure to TCDD alters dnmt expression and DNA methylation patterns.


Subject(s)
DNA Methylation/drug effects , Gene Expression Regulation, Developmental/drug effects , Polychlorinated Dibenzodioxins/toxicity , Animals , DNA/genetics , Down-Regulation/drug effects , Embryo, Nonmammalian/drug effects , Methyltransferases/genetics , Promoter Regions, Genetic , Receptors, Aryl Hydrocarbon/genetics , Response Elements , Up-Regulation/drug effects , Zebrafish , Zebrafish Proteins/genetics
20.
Aquat Toxicol ; 158: 192-201, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25481785

ABSTRACT

Understanding molecular mechanisms of toxicity is facilitated by experimental manipulations, such as disruption of function by gene targeting, that are especially challenging in non-standard model species with limited genomic resources. While loss-of-function approaches have included gene knock-down using morpholino-modified oligonucleotides and random mutagenesis using mutagens or retroviruses, more recent approaches include targeted mutagenesis using zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology. These latter methods provide more accessible opportunities to explore gene function in non-traditional model species. To facilitate evaluation of toxic mechanisms for important categories of aryl hydrocarbon pollutants, whose actions are known to be receptor mediated, we used ZFN and CRISPR-Cas9 approaches to generate aryl hydrocarbon receptor 2a (AHR2a) and AHR2b gene mutations in Atlantic killifish (Fundulus heteroclitus) embryos. This killifish is a particularly valuable non-traditional model, with multiple paralogs of AHR whose functions are not well characterized. In addition, some populations of this species have evolved resistance to toxicants such as halogenated aromatic hydrocarbons. AHR-null killifish will be valuable for characterizing the role of the individual AHR paralogs in evolved resistance, as well as in normal development. We first used five-finger ZFNs targeting exons 1 and 3 of AHR2a. Subsequently, CRISPR-Cas9 guide RNAs were designed to target regions in exon 2 and 3 of AHR2a and AHR2b. We successfully induced frameshift mutations in AHR2a exon 3 with ZFN and CRISPR-Cas9 guide RNAs, with mutation frequencies of 10% and 16%, respectively. In AHR2b, mutations were induced using CRISPR-Cas9 guide RNAs targeting sites in both exon 2 (17%) and exon 3 (63%). We screened AHR2b exon 2 CRISPR-Cas9-injected embryos for off-target effects in AHR paralogs. No mutations were observed in closely related AHR genes (AHR1a, AHR1b, AHR2a, AHRR) in the CRISPR-Cas9-injected embryos. Overall, our results demonstrate that targeted genome-editing methods are efficient in inducing mutations at specific loci in embryos of a non-traditional model species, without detectable off-target effects in paralogous genes.


Subject(s)
Fundulidae/genetics , Genetic Engineering/methods , Genome/genetics , Mutagenesis , Receptors, Aryl Hydrocarbon/genetics , Animals , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Embryo, Nonmammalian , Gene Targeting , Models, Animal , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...