Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 9(1): 2602, 2018 07 04.
Article in English | MEDLINE | ID: mdl-29973598

ABSTRACT

In many high temperature superconductors, small orthorhombic distortions of the lattice structure result in surprisingly large symmetry breaking of the electronic states and macroscopic properties, an effect often referred to as nematicity. To directly study the impact of symmetry-breaking lattice distortions on the electronic states, using low-temperature scanning tunnelling microscopy we image at the atomic scale the influence of strain-tuned lattice distortions on the correlated electronic states in the iron-based superconductor LiFeAs, a material which in its ground state is tetragonal with four-fold (C4) symmetry. Our experiments uncover a new strain-stabilised modulated phase which exhibits a smectic order in LiFeAs, an electronic state which not only breaks rotational symmetry but also reduces translational symmetry. We follow the evolution of the superconducting gap from the unstrained material with C4 symmetry through the new smectic phase with two-fold (C2) symmetry and charge-density wave order to a state where superconductivity is completely suppressed.

2.
Nat Commun ; 8: 15996, 2017 06 29.
Article in English | MEDLINE | ID: mdl-28660875

ABSTRACT

Spin fluctuations are a leading candidate for the pairing mechanism in high temperature superconductors, supported by the common appearance of a distinct resonance in the spin susceptibility across the cuprates, iron-based superconductors and many heavy fermion materials. The information we have about the spin resonance comes almost exclusively from neutron scattering. Here we demonstrate that by using low-temperature scanning tunnelling microscopy and spectroscopy we can characterize the spin resonance in real space. We show that inelastic tunnelling leads to the characteristic dip-hump feature seen in tunnelling spectra in high temperature superconductors and that this feature arises from excitations of the spin fluctuations. Spatial mapping of this feature near defects allows us to probe non-local properties of the spin susceptibility and to image its real space structure.

3.
Science ; 345(6197): 653-6, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-25081481

ABSTRACT

Spin-polarized scanning tunneling microscopy (SP-STM) has been used extensively to study magnetic properties of nanostructures. Using SP-STM to visualize magnetic order in strongly correlated materials on an atomic scale is highly desirable, but challenging. We achieved this goal in iron tellurium (Fe(1+ y)Te), the nonsuperconducting parent compound of the iron chalcogenides, by using a STM tip with a magnetic cluster at its apex. Our images of the magnetic structure reveal that the magnetic order in the monoclinic phase is a unidirectional stripe order; in the orthorhombic phase at higher excess iron concentration (y > 0.12), a transition to a phase with coexisting magnetic orders in both directions is observed. It may be possible to generalize the technique to other high-temperature superconductor families, such as the cuprates.

SELECTION OF CITATIONS
SEARCH DETAIL