Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Popul Dev Rev ; 48(2): 279-302, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35600716

ABSTRACT

Estimating excess mortality is challenging. The metric depends on the expected mortality level, which can differ based on given choices, such as the method and the time series length used to estimate the baseline. However, these choices are often arbitrary, and are not subject to any sensitivity analysis. We bring to light the importance of carefully choosing the inputs and methods used to estimate excess mortality. Drawing on data from 26 countries, we investigate how sensitive excess mortality is to the choice of the mortality index, the number of years included in the reference period, the method, and the time unit of the death series. We employ two mortality indices, three reference periods, two data time units, and four methods for estimating the baseline. We show that excess mortality estimates can vary substantially when these factors are changed, and that the largest variations stem from the choice of the mortality index and the method. We also find that the magnitude of the variation in excess mortality is country-specific, resulting in cross-country rankings changes. Finally, based on our findings, we provide guidelines for estimating excess mortality.

2.
SSM Popul Health ; 18: 101118, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35573866

ABSTRACT

Excess mortality has been used to measure the impact of COVID-19 over time and across countries. But what baseline should be chosen? We propose two novel approaches: an alternative retrospective baseline derived from the lowest weekly death rates achieved in previous years and a within-year baseline based on the average of the 13 lowest weekly death rates within the same year. These baselines express normative levels of the lowest feasible target death rates. The excess death rates calculated from these baselines are not distorted by past mortality peaks and do not treat non-pandemic winter mortality excesses as inevitable. We obtained weekly series for 35 industrialized countries from the Human Mortality Database for 2000-2020. Observed, baseline and excess mortalities were measured by age-standardized death rates. We assessed weekly and annual excess death rates driven by the COVID-19 pandemic in 2020 and those related to seasonal respiratory infections in earlier years. There was a distinct geographic pattern with high excess death rates in Eastern Europe followed by parts of the UK, and countries of Southern and Western Europe. Some Asia-Pacific and Scandinavian countries experienced lower excess mortality. In 2020 and earlier years, the alternative retrospective and the within-year excess mortality figures were higher than estimates based on conventional metrics. While the latter were typically negative or close to zero in years without extraordinary epidemics, the alternative estimates were substantial. Cumulation of this "usual" excess over 2-3 years results in human losses comparable to those caused by COVID-19. Challenging the view that non-pandemic seasonal winter mortality is inevitable would focus attention on reducing premature mortality in many countries. As SARS-CoV-2 is unlikely to be the last respiratory pathogen with the potential to cause a pandemic, such measures would also strengthen global resilience in the face of similar threats in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...