Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
Oncotarget ; 9(5): 5848-5860, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29464039

ABSTRACT

RAC3 is a transcription coactivator, usually overexpressed in several tumors and required to maintain the pluripotency in normal stem cells. In this work we studied the association between RAC3 overexpression on cancer cell stemness and the capacity of this protein to induce cancer stem properties in non tumoral cells. We performed in vitro and in vivo experiments using two strategies: by overexpressing RAC3 in the non tumoral cell line HEK293 and by silencing RAC3 in the human colorectal epithelial cell line HCT116 by transfection. Furthermore, we analysed public repository microarrays data from human colorectal tumors in different developmental stages. We found that RAC3 overexpression was mainly associated to CD133+ side-population of colon cancer cells and also to early and advanced stages of colon cancer, involving increased expression of mesenchymal and stem markers. In turn, RAC3 silencing induced diminished tumoral properties and cancer stem cells as determined by Hoechst efflux, tumorspheres and clonogenic growth, which correlated with decreased Nanog and OCT4 expression. In non tumoral cells, RAC3 overexpression induced tumoral transformation; mesenchymal phenotype and stem markers expression. Moreover, these transformed cells generated tumors in vivo. Our results demonstrate that RAC3 is required for maintaining and induction of cancer cell stemness.

2.
Biochim Biophys Acta ; 1823(6): 1119-31, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22306268

ABSTRACT

NF-κB regulates the expression of Cyclin D1 (CD1), while RAC3 is an NF-κB coactivator that enhances its transcriptional activity. In this work, we investigated the regulatory role of CD1 on NF-κB activity. We found that CD1 inhibits NF-κB transcriptional activity through a corepressor function that can be reverted by over-expressing RAC3. In both, tumoral and non-tumoral cells, the expression pattern of RAC3 and CD1 is regulated by the cell cycle, showing a gap between the maximal expression levels of each protein. The individual increase, by transfection, of either CD1 or RAC3 enhances cell proliferation. However the simultaneous and constitutive over-expression of both proteins has an inhibitory effect. Our results suggest that the relative amounts of CD1 and RAC3, and the timing of expression of these oncogenes could tilt the balance of tumor cell proliferation in response to external signals.


Subject(s)
Co-Repressor Proteins/metabolism , Cyclin D1/metabolism , NF-kappa B/metabolism , Binding Sites , Cell Adhesion , Cell Cycle , Cell Line, Tumor , Cell Proliferation , DNA/metabolism , HEK293 Cells , Humans , Models, Biological , NF-kappa B/genetics , Protein Binding , Protein Transport , Transcription, Genetic , Transcriptional Activation/genetics , rac GTP-Binding Proteins/metabolism
3.
Medicina (B Aires) ; 71(3): 238-42, 2011.
Article in Spanish | MEDLINE | ID: mdl-21745772

ABSTRACT

Autophagy and senescence are both processes that firstly avoid tumor development through the inhibition of proliferation of damaged cells. However, autophagy does not imply cell death, because it is also a mechanism of cell survival under stress conditions. Concerning senescence, although these cells do not proliferate, they produce growth factors that contribute to the proliferative response of other cells. Rapamycin is an immunosupressor used in transplanted patients that inhibits the mTOR transduction signal pathway. This pathway is involved in the control of the energetic and nutritional state of the cell allowing protein synthesis and inhibiting autophagy when it is active. In this paper, the action of rapamycin over these processes was investigated and we found that a low concentration of this drug induces the senescence of a normal cell line, while a higher concentration induces autophagy of a transformed cell line. We have also determined that the oncogen RAC3 inhibits autophagy and that its expression is diminished by rapamycin. Therefore, our results contribute to a better understanding of the molecular mechanisms by which this drug is effective, given the relevance of rapamycin for potential tumor therapy.


Subject(s)
Autophagy/drug effects , Cell Line, Tumor/drug effects , Cellular Senescence/drug effects , Immunosuppressive Agents/pharmacology , Sirolimus/pharmacology , Cell Line, Tumor/physiology , Dose-Response Relationship, Drug , Humans , Models, Biological
4.
Medicina (B Aires) ; 71(1): 33-8, 2011.
Article in Spanish | MEDLINE | ID: mdl-21296718

ABSTRACT

RAC3 has been firstly characterized as a nuclear receptor coactivator that is found in limited amounts in normal cells, but is over-expressed in tumors and is also an NF-kB coactivator. Although the mechanisms involved in its over-expression are not clear, it is well known that it enhances resistance to apoptosis. In this work, we investigated if there are any additional mechanisms by which RAC3 may contribute to tumor development and if TNF-a, an inflammatory cytokine that is found at high levels in cancer could increase RAC3 levels. We found that enhancement of RAC3 levels by transfection of HEK293 cells with a RAC3 expression vector induces a significant increase of cell proliferation not only in the presence, but also in the absence of serum growth factors. Moreover, the cells were transformed showing an anchorage independent growth, similar to that observed in tumoral cells. The treatment of HEK293 cells with TNF-a induced an increase in the protein levels of RAC3 and this was blocked by an NF-kB specific inhibitor, suggesting that this transcription factor is involved in the cytokine effect. We conclude that RAC3, in addition to is anti-apoptotic action, is a transforming factor that promotes the proliferation and growth independent of anchorage, and that its levels could be elevated by the action of inflammatory cytokines that are involved in the anti-tumoral response.


Subject(s)
Apoptosis/physiology , Cell Proliferation/drug effects , Tumor Necrosis Factor-alpha/pharmacology , rac GTP-Binding Proteins/physiology , HEK293 Cells , Humans , Transcription Factors/drug effects , Transfection/methods , rac GTP-Binding Proteins/analysis
5.
Medicina (B Aires) ; 67(5): 465-8, 2007.
Article in Spanish | MEDLINE | ID: mdl-18051230

ABSTRACT

RAC3 belongs to the family of p160 nuclear receptors coactivators and it is over-expressed in several tumors. We have previously shown that RAC3 is a NF-kappaB coactivator. In this paper, we investigated the role of RAC3 in cell-sensitivity to apoptosis, using H2O2 in the human embryonic kidney cell line (HEK293), and tumor necrosis factor-related apoptosis inducing ligand (TRAIL) in a human chronic myeloid leukemia cell line (K562) naturally resistant to TRAIL. We observed that the tumoral K562 cells have high levels of RAC3 if compared with the non-tumoral HEK293 cells. The normal or transfected coactivator over-expression inhibits apoptosis through a diminished caspase activity and AIF nuclear translocation, increased NF-kappaB, AKT and p38, and decreased ERK activities. In contrast, inhibition of RAC3 by siRNA induced sensitivity of K562 to TRAIL-induced apoptosis. Such results suggest that over-expression of RAC3 contributes to tumor development through molecular mechanisms that do not depend strictly on acetylation and/or steroid hormones, which control cell death. This could be a possible target for future tumor therapies.


Subject(s)
Apoptosis/physiology , Cell Transformation, Neoplastic , Receptors, TNF-Related Apoptosis-Inducing Ligand/physiology , TNF-Related Apoptosis-Inducing Ligand/physiology , Transcription Factors/physiology , rac GTP-Binding Proteins/physiology , Humans , Kidney/cytology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Receptors, Cytoplasmic and Nuclear
6.
Medicina (B.Aires) ; 67(5): 465-468, sep.-oct. 2007. graf
Article in Spanish | LILACS | ID: lil-489369

ABSTRACT

RAC3 pertenece a la familia de coactivadores de receptores nucleares p160, y se encuentra sobreexpresado en varios tumores. Demostramos previamente que RAC3 es coactivador del factor de transcripción anti-apoptótico NF-kB. En este trabajo investigamos su rol en la apoptosis inducida por H2O2 en una línea celular no tumoral derivada de riñón embrionario humano (HEK293), y por el ligando inductor de apoptosis relacionado a TNF (TRAIL) en una línea de leucemia mieloide crónica humana (K562), naturalmente resistente a la muerte por este estímulo. Observamos que las células tumorales K562 poseen niveles altos de RAC3 comparados con las células no tumorales HEK293. La sobreexpresión normal de coactivador o por transfección, inhibe la apoptosis mediante una disminución de la activación de caspasas, translocación del factor inductor de apoptosis (AIF) al núcleo, aumento de la actividad de NF-kB y las quinasas AKT y p38 y disminución de la quinasa ERK. Lo opuesto fue observado por disminución de RAC3 mediante la técnica de ARN interferente (RNAi) en K562, aumentando así la apoptosis inducida por TRAIL. Estas evidencias sugieren que una sobreexpresión de RAC3 contribuye al desarrollo de tumores, participando en las cascadas que controlan la muerte celular por mecanismos no estrictamente dependientes de hormonas esteroideas y/o de acetilación, constituyendo esto un posible blanco de ataque para el tratamiento de tumores.


RAC3 belongs to the family of p160 nuclear receptors coactivators and it is over-expressed in several tumors. We have previously shown that RAC3 is a NF-kB coactivator. In this paper, we investigated the role of RAC3 in cell-sensitivity to apoptosis, using H2O2 in the human embryonic kidney cell line (HEK293), and tumor necrosis factor-related apoptosis inducing ligand (TRAIL) in a human chronic myeloid leukemia cell line (K562) naturally resistant to TRAIL. We observed that the tumoral K562 cells have high levels of RAC3 if compared with the non-tumoral HEK293 cells. The normal or transfected coactivator over-expression inhibits apoptosis through a diminished caspase activity and AIF nuclear translocation, increased NF-kB, AKT and p38, and decreased ERK activities. In contrast, inhibition of RAC3 by siRNA induced sensitivity of K562 to TRAIL-induced apoptosis. Such results suggest that over-expression of RAC3 contributes to tumor development through molecular mechanisms that do not depend strictly on acetylation and/or steroid hormones, which control cell death. This could be a possible target for future tumor therapies.


Subject(s)
Humans , Apoptosis/physiology , Cell Transformation, Neoplastic , Receptors, TNF-Related Apoptosis-Inducing Ligand/physiology , TNF-Related Apoptosis-Inducing Ligand/physiology , Transcription Factors/physiology , rac GTP-Binding Proteins/physiology , Kidney/cytology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Receptors, Cytoplasmic and Nuclear
SELECTION OF CITATIONS
SEARCH DETAIL