Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
J Sci Food Agric ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39031784

ABSTRACT

BACKGROUND: Viticulture has adapted foliar applications of biostimulants as a tool to improve crop quality. Recently, nanotechnology has been incorporated as a strategy to reduce the loss of biostimulants and treat nutrient deficiencies. Therefore, the present study aimed to investigate the effect of foliar applications of amorphous calcium phosphate nanoparticles (ACP) doped with methyl jasmonate (ACP-MeJA) and urea (ACP-Ur), individually or together (ACP-MeJA+Ur), on the content of volatile compounds in 'Tempranillo' grapes, compared to the conventional application of MeJA and Ur, individually or in combination (MeJA+Ur). RESULTS: The results showed that nanoparticle treatments reduced the total C6 compounds and some carbonyl compounds in the grape musts. This is of novel interest because their presence at high levels is undesirable to quality. In addition, some aroma-positive compounds such as nerol, neral, geranyl acetone, ß-cyclocitral, ß-ionone, 2-phenylethanal and 2-phenylethanol increased, despite applying MeJA and Ur at a lower dose. CONCLUSION: Consequently, although few differences in grape volatile composition were detected, nanotechnology could be an option for improving the aromatic quality of grapes, at the same time as reducing the required doses of biostimulants and generating more sustainable agricultural practices. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38836701

ABSTRACT

Biomedical data are generated and collected from various sources, including medical imaging, laboratory tests and genome sequencing. Sharing these data for research can help address unmet health needs, contribute to scientific breakthroughs, accelerate the development of more effective treatments and inform public health policy. Due to the potential sensitivity of such data, however, privacy concerns have led to policies that restrict data sharing. In addition, sharing sensitive data requires a secure and robust infrastructure with appropriate storage solutions. Here, we examine and compare the centralized and federated data sharing models through the prism of five large-scale and real-world use cases of strategic significance within the European data sharing landscape: the French Health Data Hub, the BBMRI-ERIC Colorectal Cancer Cohort, the federated European Genome-phenome Archive, the Observational Medical Outcomes Partnership/OHDSI network and the EBRAINS Medical Informatics Platform. Our analysis indicates that centralized models facilitate data linkage, harmonization and interoperability, while federated models facilitate scaling up and legal compliance, as the data typically reside on the data generator's premises, allowing for better control of how data are shared. This comparative study thus offers guidance on the selection of the most appropriate sharing strategy for sensitive datasets and provides key insights for informed decision-making in data sharing efforts.


Subject(s)
Biological Science Disciplines , Information Dissemination , Humans , Medical Informatics/methods
3.
Proteomics ; 24(14): e2300522, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38807556

ABSTRACT

The mammalian ejaculate is very well suited to proteomics studies. As such, research concerning sperm proteomics is offering a huge amount of new information on the biology of spermatozoa. Among domestic animals, horses represent a species of special interest, in which reproductive technologies and a sizeable market of genetic material have grown exponentially in the last decade. Studies using proteomic approaches have been conducted in recent years, showing that proteomics is a potent tool to dig into the biology of the stallion spermatozoa. The aim of this review is to present an overview of the research conducted, and how these studies have improved our knowledge of stallion sperm biology. The main outcomes of the research conducted so far have been an improved knowledge of metabolism, and its importance in sperm functions, the impact of different technologies on the sperm proteome, and the identification of potential biomarkers. Moreover, proteomics of seminal plasma and phosphoproteomics are identified as areas of major interest.


Subject(s)
Proteomics , Spermatozoa , Animals , Horses , Male , Spermatozoa/metabolism , Proteomics/methods , Proteome/metabolism , Proteome/analysis , Biomarkers/metabolism
4.
Reprod Fertil Dev ; 362024 Mar.
Article in English | MEDLINE | ID: mdl-38467450

ABSTRACT

We are currently experiencing a period of rapid advancement in various areas of science and technology. The integration of high throughput 'omics' techniques with advanced biostatistics, and the help of artificial intelligence, is significantly impacting our understanding of sperm biology. These advances will have an appreciable impact on the practice of reproductive medicine in horses. This article provides a brief overview of recent advances in the field of spermatology and how they are changing assessment of sperm quality. This article is written from the authors' perspective, using the stallion as a model. We aim to portray a brief overview of the changes occurring in the assessment of sperm motility and kinematics, advances in flow cytometry, implementation of 'omics' technologies, and the use of artificial intelligence/self-learning in data analysis. We also briefly discuss how some of the advances can be readily available to the practitioner, through the implementation of 'on-farm' devices and telemedicine.


Subject(s)
Semen Preservation , Semen , Male , Horses , Animals , Sperm Motility , Artificial Intelligence , Semen Preservation/veterinary , Semen Preservation/methods , Cryopreservation/veterinary , Semen Analysis/veterinary , Spermatozoa
5.
Med Intensiva (Engl Ed) ; 48(6): 341-355, 2024 06.
Article in English | MEDLINE | ID: mdl-38493062

ABSTRACT

Temperature management has been used in patients with acute brain injury resulting from different conditions, such as post-cardiac arrest hypoxic-ischaemic insult, acute ischaemic stroke, and severe traumatic brain injury. However, current evidence offers inconsistent and often contradictory results regarding the clinical benefit of this therapeutic strategy on mortality and functional outcomes. Current guidelines have focused mainly on active prevention and treatment of fever, while therapeutic hypothermia (TH) has fallen into disuse, although doubts persist as to its effectiveness according to the method of application and appropriate patient selection. This narrative review presents the most relevant clinical evidence on the effects of TH in patients with acute neurological damage, and the pathophysiological concepts supporting its use.


Subject(s)
Brain Injuries , Hypothermia, Induced , Humans , Hypothermia, Induced/methods , Brain Injuries/therapy , Brain Injuries/complications , Fever/etiology , Fever/therapy , Brain Injuries, Traumatic/therapy , Brain Injuries, Traumatic/complications , Hypoxia-Ischemia, Brain/therapy
6.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338718

ABSTRACT

Sarcopenia, a complex and debilitating condition characterized by progressive deterioration of skeletal muscle, is the primary cause of age-associated disability and significantly impacts healthspan in elderly patients. Despite its prevalence among the aging population, the underlying molecular mechanisms are still under investigation. The NLRP3 inflammasome is crucial in the innate immune response and has a significant impact on diseases related to inflammation and aging. Here, we investigated the expression of the NLRP3 inflammasome pathway and pro-inflammatory cytokines in skeletal muscle and peripheral blood of dependent and independent patients who underwent hip surgery. Patients were categorized into independent and dependent individuals based on their Barthel Index. The expression of NLRP3 inflammasome components was significantly upregulated in sarcopenic muscle from dependent patients, accompanied by higher levels of Caspase-1, IL-1ß and IL-6. Among older dependent individuals with sarcopenia, there was a significant increase in the MYH3/MYH2 ratio, indicating a transcriptional shift in expression from mature to developmental myosin isoforms. Creatine kinase levels and senescence markers were also higher in dependent patients, altogether resembling dystrophic diseases and indicating muscle degeneration. In summary, we present evidence for the involvement of the NLRP3/ASC/NEK7/Caspase-1 inflammasome pathway with activation of pro-inflammatory SASP in the outcome of sarcopenia in the elderly.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , Sarcopenia , Humans , Aged , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Sarcopenia/etiology , Caspase 1/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Muscle, Skeletal/metabolism
7.
Funct Plant Biol ; 512024 01.
Article in English | MEDLINE | ID: mdl-38266278

ABSTRACT

Flooding is a predominant abiotic stress for cultivated plants, including barley. This cereal crop shows a large adaptability to different environmental conditions, suggesting the presence of key traits to tolerate adverse conditions. During germination, genetic variations account for dissimilarities in flooding tolerance. However, differences in the seed microbiota may also contribute to tolerance/sensitivity during seedling establishment. This work investigated differences in microbiome among the grains of barley accessions. Two barley phenotypes were compared, each either tolerant or sensitive to a short submergence period followed by a recovery. The study used a metataxonomic analysis based on 16S ribosomal RNA gene sequencing and subsequent functional prediction. Our results support the hypothesis that bacterial microbiota inhabiting the barley seeds are different between sensitive and tolerant barley accessions, which harbour specific bacterial phyla and families. Finally, bacteria detected in tolerant barley accessions show a peculiar functional enrichment that suggests a possible connection with successful germination and seedling establishment.


Subject(s)
Hordeum , Microbiota , Humans , Hordeum/genetics , Hordeum/microbiology , Genotype , Seedlings/genetics , Seeds/genetics , Microbiota/genetics , Bacteria/genetics
8.
J Am Chem Soc ; 146(6): 3591-3597, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38295054

ABSTRACT

Here we present the discovery and development of a highly selective aromatic C-H amination reaction. This electrochemical strategy involves a cathodic reduction process that generates highly electrophilic dicationic N-centered radicals that can efficiently engage in aromatic C-H functionalization and channel the regioselectivity of the aromatic substitution. The nitrogen-radical cation-pi interaction with arenes used throughout nature leads to a charge transfer mechanism, with subsequent aromatic C-N bond formation. This electrochemical process generates aryl DABCOnium salts in excellent yields and regioselectivities (single regioisomer in most cases). The scope of the reaction on arene is broad where various functionalities such as aryl halides (bromides, chlorides, fluorides), carbonyls (ketones, esters, imides), sulfonamides, and heteroarenes (pyridines, bipyridines, and terpyridines) are well tolerated. Moreover, we disclose the synthetic utility of the aryl DABCOnium salt adducts leading to the direct access of diverse aryl piperazines and the chemoselective cleavage of the exocyclic aryl C(sp2)-N bond over electrophilic C(sp3)-N+ bonds via photoredox catalysis to afford synthetically useful aryl radicals that can engage in aryl C-C and C-P bond formation.

9.
Reproduction ; 167(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37870246

ABSTRACT

In brief: Although common in many commercial extenders, supraphysiological concentrations of glucose in the media may be detrimental to stallion spermatozoa. In this study, we present evidence that these elevated glucose levels may predispose spermatozoa to ferroptosis. Abstract: Stallion spermatozoa depend on oxidative phosphorylation as their major source of ATP; however, the metabolism of these cells is complex and a great degree of metabolic plasticity exists. The composition of the media in which the spermatozoa are extended, or exposed to in the mare's reproductive tract, exerts a profound effect on sperm function and may even accelerate cell demise. Recent research indicates that high concentrations of glucose in the media, although common in commercial extenders, may be detrimental. To determine if supraphysiological glucose concentration may induce or predispose to ferroptosis (a caspase-independent form of programmed cell death, triggered by oxidative stress), stallion spermatozoa were incubated under different concentrations of glucose, 67 mM (HG) or 1 mM plus 10 mM pyruvate (LG-HP), in the presence or absence of known inductors of ferroptosis. Furthermore, we developed a single-cell flow metabolic assay to identify different metabolic phenotypes in spermatozoa. Storage and incubation of spermatozoa under high glucose concentrations led to an increase in the percentage of necrotic spermatozoa (P < 0.0001). Moreover, ferroptosis was induced more intensely in sperm in media with high glucose concentrations (P < 0.0001). Finally, we observed that induction of ferroptosis modified two proteins (oxoglutarate dehydrogenase and superoxide dismutase 2) in spermatozoa incubated in media containing 67 mM glucose but not in media containing 1 mM glucose and 10 mM pyruvate. The composition of the media, especially the concentration of glucose, exerts a major impact on the functionality and life span of the spermatozoa. The results reported here may pave the way for improvements in existing semen extenders.


Subject(s)
Ferroptosis , Semen Preservation , Animals , Horses , Male , Female , Glucose/pharmacology , Glucose/metabolism , Semen , Spermatozoa/metabolism , Pyruvic Acid/pharmacology , Pyruvic Acid/metabolism , Sperm Motility , Semen Preservation/methods
10.
J Sci Food Agric ; 104(2): 598-610, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37615514

ABSTRACT

BACKGROUND: Elicitors induce defense mechanisms, triggering the synthesis of secondary metabolites. Irrigation has implications for a more sustainable viticulture and for grape composition. The aim was to investigate the influence on grape aroma composition during 2019 and 2020 of the foliar application of amorphous calcium phosphate (ACP) nanoparticles and ACP doped with methyl jasmonate (ACP-MeJ), as an elicitor, with rainfed or regulated deficit irrigation (RDI) grapevines. RESULTS: In both growing seasons, nearly all terpenoids, C13 norisoprenoids, benzenoid compounds and alcohols increased with ACP-MeJ under the RDI regimen. In 2019, under the rainfed regime, ACP treatment increased limonene, p-cymene, α-terpineol, 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN), 2-ethyl-1-hexanol, (E,E)-2,4-heptadienal, and MeJ concentration in comparison with control grapes. In 2020, the rainfed regime treated with ACP-MeJ only increased the nonanoic acid content. Grape volatile compounds were most influenced by season and watering status whereas the foliar application mainly affected the terpenoids. CONCLUSION: A RDI regime combined with the elicitor ACP-MeJ application could improve the synthesis of certain important volatile compounds, such as p-cymene, linalool, α-terpineol, geranyl acetone, ß-ionone, 2-phenylethanol, benzyl alcohol, and nonanoic acid in Monastrell grapes. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Vitis , Wine , Vitis/chemistry , Cyclohexane Monoterpenes/analysis , Wine/analysis , Fruit/chemistry
11.
Andrology ; 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38041502

ABSTRACT

BACKGROUND: Most commerce of equine seminal doses is carried out using commercial extenders under refrigeration at 5°C. OBJECTIVES: To determine if 10 mm pyruvate in a 67 mm glucose extender and storage at 22°C could be the basis of an alternative storage method to cooling to 5°C. MATERIAL AND METHODS: Stallion ejaculates were extendedin: INRA96 (67 mm glucose, non-pyruvate control), modified Tyrode's (67 mm glucose-10 mm pyruvate), supplemented with 0, 10, 50, and 100 µM itaconate. As itaconate was vehiculated in DMSO, a control vehicle was also included. Sperm motility, viability, mitochondrial membrane potential, and production of reactive oxygen species were measured after collection and again after 48 and 96 h of storage at 22°C. To disclose molecular metabolic changes, spermatozoa were incubated up to 3 h in modified Tyrode's 67 mm glucose-10 mm pyruvate and modified Tyrode's 67 mm glucose, and metabolic analysis conducted. RESULTS: After 96 h of storage aliquots stored in the control, INRA96 had a very poor total motility of 5.6% ± 2.3%, while in the 67 mm glucose-10 mm pyruvate/10 µm itaconate extender, total motility was 34.7% ± 3.8% (p = 0.0066). After 96 h, viability was better in most pyruvate-based media, and the mitochondrial membrane potential in spermatozoa extended in INRA96 was relatively lower (p < 0.0001). Metabolomics revealed that in the spermatozoa incubated in the high pyruvate media, there was an increase in the relative amounts of NAD+ , pyruvate, lactate, and ATP. DISCUSSION AND CONCLUSIONS: Aliquots stored in a 67 mm glucose-10 mm pyruvate-based medium supplemented with 10 µM itaconate, maintained a 35% total motility after 96 h of storage at 22°C, which is considered the minimum acceptable motility for commercialization. Improvements may be related to the conversion of pyruvate to lactate and regeneration of NAD+ .

12.
Med Intensiva (Engl Ed) ; 47(10): 603-615, 2023 10.
Article in English | MEDLINE | ID: mdl-37858367

ABSTRACT

Selective digestive decontamination (SDD) is a prophylactic strategy aimed at preventing or eradicating bacterial overgrowth in the intestinal flora that precedes the development of most infections in the Intensive Care Unit. SDD prevents serious infections, reduces mortality, is cost-effective, has no adverse effects, and its short- or long-term use is not associated with any significant increase in antimicrobial resistance. SDD is one of the most widely evaluated interventions in critically ill patients, yet its use is not widespread. The present article offers a narrative review of the most relevant evidence and an update of the pathophysiological concepts of infection control supporting the use of SDD.


Subject(s)
Anti-Bacterial Agents , Bacterial Infections , Humans , Anti-Bacterial Agents/therapeutic use , Decontamination , Gastrointestinal Tract/microbiology , Bacterial Infections/drug therapy , Infection Control
13.
Med. intensiva (Madr., Ed. impr.) ; 47(10): 603-615, oct. 2023. tab, ilus
Article in Spanish | IBECS | ID: ibc-226336

ABSTRACT

La descontaminación digestiva selectiva (DDS) es una estrategia profiláctica cuyo objetivo es prevenir o erradicar el sobrecrecimiento bacteriano en la flora intestinal que precede al desarrollo de la mayoría de las infecciones en la UCI. La DDS previene infecciones graves, reduce la mortalidad, es coste-efectiva, no tiene efectos adversos, y su uso a corto o largo plazo no muestra un aumento significativo de la resistencia antimicrobiana. La DDS es una de las intervenciones más evaluadas en pacientes críticos, a pesar de lo cual su uso no se ha generalizado. El objetivo de este artículo es presentar una revisión narrativa de la evidencia más relevante y una actualización de los conceptos fisiopatológicos de control de la infección en los que se fundamenta el uso de la DDS. (AU)


Selective digestive decontamination (SDD) is a prophylactic strategy aimed at preventing or eradicating the bacterial overgrowth in the intestinal flora that precedes the development of most infections in the ICU. SDD prevents serious infections, reduces mortality, is cost-effective, has no adverse effects, and its short- or long-term use does not show a significant increase in antimicrobial resistance.SDD is one of the most evaluated interventions in critically ill patients, yet its use is not widespread. The aim of this article is to present a narrative review of the most relevant evidence and an update of the pathophysiological concepts of infection control supporting the use of SDD. (AU)


Subject(s)
Humans , Decontamination/methods , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/physiopathology , Antibiotic Prophylaxis , Intensive Care Units , Infection Control
14.
Small ; 19(50): e2303934, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37632323

ABSTRACT

Treatment failure in breast cancers overexpressing human epidermal growth factor receptor 2 (HER2) is associated mainly to the upregulation of human epidermal growth factor receptor 3 (HER3) oncoprotein linked to chemoresitence. Therefore, to increase patient survival, here a multimodal theranostic nanoplatform targeting both HER2 and HER3 is developed. This consists of doxorubicin-loaded branched gold nanoshells functionalized with the near-infrared (NIR) fluorescent dye indocyanine green, a small interfering RNA (siRNA) against HER3, and the HER2-specific antibody Transtuzumab, able to provide a combined therapeutic outcome (chemo- and photothermal activities, RNA silencing, and immune response). In vitro assays in HER2+ /HER3+ SKBR-3 breast cancer cells have shown an effective silencing of HER3 by the released siRNA and an inhibition of HER2 oncoproteins provided by Trastuzumab, along with a decrease of the serine/threonine protein kinase Akt (p-AKT) typically associated with cell survival and proliferation, which helps to overcome doxorubicin chemoresistance. Conversely, adding the NIR light therapy, an increment in p-AKT concentration is observed, although HER2/HER3 inhibitions are maintained for 72 h. Finally, in vivo studies in a tumor-bearing mice model display a significant progressively decrease of the tumor volume after nanoparticle administration and subsequent NIR light irradiation, confirming the potential efficacy of the hybrid nanocarrier.


Subject(s)
Breast Neoplasms , Nanoshells , Humans , Animals , Mice , Female , Breast Neoplasms/metabolism , Proto-Oncogene Proteins c-akt , Gold , Receptor, ErbB-2/genetics , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , RNA, Small Interfering , Cell Line, Tumor
16.
Front Plant Sci ; 14: 1124298, 2023.
Article in English | MEDLINE | ID: mdl-37404528

ABSTRACT

Abiotic stresses, such as temperature, heat waves, water limitation, solar radiation and the increase in atmospheric CO2 concentration, significantly influence the accumulation of secondary metabolites in grapevine berries at different developmental stages, and in vegetative organs. Transcriptional reprogramming, miRNAs, epigenetic marks and hormonal crosstalk regulate the secondary metabolism of berries, mainly the accumulation of phenylpropanoids and of volatile organic compounds (VOCs). Currently, the biological mechanisms that control the plastic response of grapevine cultivars to environmental stress or that occur during berry ripening have been extensively studied in many worlds viticultural areas, in different cultivars and in vines grown under various agronomic managements. A novel frontier in the study of these mechanisms is the involvement of miRNAs whose target transcripts encode enzymes of the flavonoid biosynthetic pathway. Some miRNA-mediated regulatory cascades, post-transcriptionally control key MYB transcription factors, showing, for example, a role in influencing the anthocyanin accumulation in response to UV-B light during berry ripening. DNA methylation profiles partially affect the berry transcriptome plasticity of different grapevine cultivars, contributing to the modulation of berry qualitative traits. Numerous hormones (such as abscisic and jasmomic acids, strigolactones, gibberellins, auxins, cytokynins and ethylene) are involved in triggering the vine response to abiotic and biotic stress factors. Through specific signaling cascades, hormones mediate the accumulation of antioxidants that contribute to the quality of the berry and that intervene in the grapevine defense processes, highlighting that the grapevine response to stressors can be similar in different grapevine organs. The expression of genes responsible for hormone biosynthesis is largely modulated by stress conditions, thus resulting in the numeourous interactions between grapevine and the surrounding environment.

17.
J Exp Bot ; 74(14): 4277-4289, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37100757

ABSTRACT

Global climate change has dramatically increased flooding events, which have a strong impact on crop production. Barley (Hordeum vulgare) is one of the most important cereals and its cultivation includes a broad range of different environments. We tested the capacity to germinate of a large barley panel after a short period of submergence followed by a period of recovery. We demonstrate that sensitive barley varieties activate underwater secondary dormancy because of a lower permeability to oxygen dissolved in water. In sensitive barley accessions, secondary dormancy is removed by nitric oxide donors. The results of a genome-wide association study uncovered a Laccase gene located in a region of significant marker-trait association that is differently regulated during grain development and plays a key role in this process. Our findings will help breeders to improve the genetics of barley, thereby increasing the capacity of seeds to germinate after a short period of flooding.


Subject(s)
Germination , Hordeum , Germination/genetics , Hordeum/genetics , Genome-Wide Association Study , Seeds/genetics , Edible Grain/genetics , Hypoxia
19.
J Sci Food Agric ; 103(10): 4813-4825, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-36905182

ABSTRACT

BACKGROUND: Grape aromas are formed by a great number of volatile compounds. Methyl jasmonate (MeJ) and urea (Ur) foliar applications have been studied to improve grape quality, but their combined application has never been studied. RESULTS: In both seasons, MeJ application enhanced terpenoids and C6 compounds synthesis, though decreased alcohols content. Moreover, MeJ + Ur treatment reduced benzenoids and alcohols and did not affect C13 -norisoprenoids content. However, there was no clear effect of these treatments on the rest of the volatile compounds. Multifactorial analysis showed a season effect on all volatile compounds, except terpenoids. Discriminant analysis showed a good separation among samples under treatment criterion. The great effect of MeJ treatment on terpenoids was probably due to this elicitor influencing their biosynthesis. CONCLUSION: Season has a strong influence on grapes aromatic composition since it affects all volatile compound families except terpenoids. MeJ foliar application enhanced terpenoids, C13 -norisoprenoids and C6 compounds synthesis, whereas decreased alcohols content; however, MeJ + Ur foliar treatment did not affect C13 -norisoprenoids and C6 compounds, and decreased benzenoids and alcohols grape compounds. Therefore, no synergistic effect was observed between Ur and MeJ on grape volatile compounds biosynthesis. Foliar application of MeJ seems to be sufficient to improve the aromatic quality of grapes. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Vitis , Volatile Organic Compounds , Wine , Humans , Vitis/chemistry , Wine/analysis , Odorants/analysis , Urea/pharmacology , Urea/analysis , Norisoprenoids , Fruit/chemistry , Volatile Organic Compounds/analysis
20.
Foods ; 12(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36981069

ABSTRACT

Methyl jasmonate (MeJ) is an elicitor that, when applied in the vineyard, can improve grape quality. There are several studies about the MeJ influence on red grape varieties; however, to our knowledge, there is little information about white grape varieties, specifically Tempranillo Blanco. Therefore, the aim of this work is to evaluate the effect of MeJ foliar treatments, carried out at veraison and post-veraison, on the aromatic, phenolic and nitrogen composition of Tempranillo Blanco grapes. The results showed that grape volatile compounds content increased after MeJ application, especially terpenoids, C13 norisoprenoids, benzenoids and alcohols, and, in general, mainly at post-veraison. Regarding phenolic and nitrogen compounds, their concentrations were enhanced after MeJ treatments, regardless of application time. Consequently, MeJ treatment improved grape volatile, phenolic and nitrogen composition, particularly when this elicitor was applied post-veraison. Therefore, this is a good and easy tool to modulate white grape quality.

SELECTION OF CITATIONS
SEARCH DETAIL