Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Proc Biol Sci ; 290(2004): 20230797, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37554037

ABSTRACT

Ecological specialists constitute relevant case studies for understanding the mechanisms, potential and limitations of evolution. The species-rich and strictly myrmecophagous spiders of the genus Zodarion show diversified defence mechanisms, including myrmecomorphy of different ant species and nocturnality. Through Hybridization Capture Using RAD Probes (hyRAD), a phylogenomic technique designed for sequencing poorly preserved specimens, we reconstructed a phylogeny of Zodarion using 52 (approx. a third of the nominal) species that cover its phylogenetic and distributional diversity. We then estimated the evolution of body size and colour, traits that have diversified noticeably and are linked to defence mechanisms, across the group. Our genomic matrix of 300 loci led to a well-supported phylogenetic hypothesis that uncovered two main clades inside Zodarion. Ancestral state estimation revealed the highly dynamic evolution of body size and colour across the group, with multiple transitions and convergences in both traits, which we propose is likely indicative of multiple transitions in ant specialization across the genus. Our study will allow the informed targeted selection of Zodarion taxa of special interest for research into the group's remarkable adaptations to ant specialization. It also exemplifies the utility of hyRAD for phylogenetic studies using museum material.


Subject(s)
Spiders , Animals , Phylogeny , Spiders/genetics , Color , Predatory Behavior , Genomics
2.
Zookeys ; 1146: 1-42, 2023.
Article in English | MEDLINE | ID: mdl-37234290

ABSTRACT

In this study the aim was to resolve the taxonomy of several species of Argyria Hübner (Pyraloidea, Crambinae) with previously unrecognised morphological variation. By analysing the DNA barcode (COI-5P) in numerous specimens, the aim was to reconstruct phylogenetic relationships between species, to provide better evidence for synonymies, and to circumscribe their geographical distribution. Using an innovative DNA hybridisation capture protocol, the DNA barcode of the lectotype of Argyrialacteella (Fabricius, 1794) was partially recovered for comparison with the 229 DNA barcode sequences of Argyria specimens available in the Barcode of Life Datasystems, and this firmly establishes the identity of the species. The same protocol was used for the following type specimens: the Argyriaabronalis (Walker, 1859) holotype, thus confirming the synonymy of this name with A.lacteella, the holotype of A.lusella (Zeller, 1863), syn. rev., the holotype of A.multifacta Dyar, 1914, syn. nov. newly synonymised with A.lacteella, and a specimen of Argyriadiplomochalis Dyar, 1913, collected in 1992. In addition, nine specimens of A.lacteella, A.diplomochalis, A.centrifugens Dyar, 1914 and A.gonogramma Dyar, 1915, from North to South America were sampled using classical COI amplification and Sanger sequencing. Argyriagonogramma Dyar, described from Bermuda, is the name to be applied to the more widespread North American species formerly identified as A.lacteella. Following morphological study of its holotype, Argyriavestalis Butler, 1878, syn. nov. is also synonymised with A.lacteella. The name A.pusillalis Hübner, 1818, is considered a nomen dubium associated with A.gonogramma. The adult morphology is diagnosed and illustrated, and distributions are plotted for A.lacteella, A.diplomochalis, A.centrifugens, and A.gonogramma based on slightly more than 800 specimens. For the first time, DNA barcode sequences are provided for the Antillean A.diplomochalis. This work provides a modified, improved protocol for the efficient hybrid capture enrichment of DNA barcodes from 18th and 19th century type specimens in order to solve taxonomic issues in Lepidoptera.

3.
G3 (Bethesda) ; 12(9)2022 08 25.
Article in English | MEDLINE | ID: mdl-35861391

ABSTRACT

Deceptive pollination often involves volatile organic compound emissions that mislead insects into performing nonrewarding pollination. Among deceptively pollinated plants, Arum maculatum is particularly well-known for its potent dung-like volatile organic compound emissions and specialized floral chamber, which traps pollinators-mainly Psychoda phalaenoides and Psychoda grisescens-overnight. However, little is known about the genes underlying the production of many Arum maculatum volatile organic compounds, and their influence on variation in pollinator attraction rates. Therefore, we performed de novo transcriptome sequencing of Arum maculatum appendix and male floret tissue collected during anthesis and postanthesis, from 10 natural populations across Europe. These RNA-seq data were paired with gas chromatography-mass spectrometry analyses of floral scent composition and pollinator data collected from the same inflorescences. Differential expression analyses revealed candidate transcripts in appendix tissue linked to malodourous volatile organic compounds including indole, p-cresol, and 2-heptanone. In addition, we found that terpene synthase expression in male floret tissue during anthesis significantly covaried with sex- and species-specific attraction of Psychoda phalaenoides and Psychoda grisescens. Taken together, our results provide the first insights into molecular mechanisms underlying pollinator attraction patterns in Arum maculatum and highlight floral chamber sesquiterpene (e.g. bicyclogermacrene) synthases as interesting candidate genes for further study.


Subject(s)
Araceae , Arum , Volatile Organic Compounds , Alkyl and Aryl Transferases , Araceae/chemistry , Araceae/metabolism , Arum/metabolism , Flowers/genetics , Flowers/metabolism , Pollination/genetics , Transcriptome , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism
4.
Nat Commun ; 13(1): 1921, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35396388

ABSTRACT

Quaternary climatic oscillations had a large impact on European biogeography. Alternation of cold and warm stages caused recurrent glaciations, massive vegetation shifts, and large-scale range alterations in many species. The Eurasian steppe biome and its grasslands are a noteworthy example; they underwent climate-driven, large-scale contractions during warm stages and expansions during cold stages. Here, we evaluate the impact of these range alterations on the late Quaternary demography of several phylogenetically distant plant and insect species, typical of the Eurasian steppes. We compare three explicit demographic hypotheses by applying an approach combining convolutional neural networks with approximate Bayesian computation. We identified congruent demographic responses of cold stage expansion and warm stage contraction across all species, but also species-specific effects. The demographic history of the Eurasian steppe biota reflects major paleoecological turning points in the late Quaternary and emphasizes the role of climate as a driving force underlying patterns of genetic variance on the biome level.


Subject(s)
Biological Evolution , Climate Change , Bayes Theorem , Biota , Ecosystem , Phylogeny
5.
New Phytol ; 235(2): 391-401, 2022 07.
Article in English | MEDLINE | ID: mdl-35306671

ABSTRACT

The rapid development of ancient DNA analysis in the last decades has induced a paradigm shift in ecology and evolution. Driven by a combination of breakthroughs in DNA isolation techniques, high-throughput sequencing, and bioinformatics, ancient genome-scale data for a rapidly growing variety of taxa are now available, allowing researchers to directly observe demographic and evolutionary processes over time. However, the vast majority of paleogenomic studies still focus on human or animal remains. In this article, we make the case for a vast untapped resource of ancient plant material that is ideally suited for paleogenomic analyses: plant remains, such as needles, leaves, wood, seeds, or fruits, that are deposited in natural archives, such as lake sediments, permafrost, or even ice caves. Such plant remains are commonly found in large numbers and in stratigraphic sequence through time and have so far been used primarily to reconstruct past local species presences and abundances. However, they are also unique repositories of genetic information with the potential to revolutionize the fields of ecology and evolution by directly studying microevolutionary processes over time. Here, we give an overview of the current state-of-the-art, address important challenges, and highlight new research avenues to inspire future research.


Subject(s)
DNA, Ancient , Permafrost , Animals , DNA, Plant/genetics , Lakes , Plants/genetics
6.
Mol Ecol ; 31(10): 2951-2967, 2022 05.
Article in English | MEDLINE | ID: mdl-35263484

ABSTRACT

The importance of hybridization and introgression is well documented in the evolution of plants but, in insects, their role is not fully understood. Given the fact that insects are the most diverse group of organisms, assessing the impact of reticulation events on their evolution may be key to comprehend the emergence of such remarkable diversity. Here, we used an insect model, the Spialia butterflies, to gather genomic evidence of hybridization as a promoter of novel diversity. By using double-digest RADseq (ddRADseq), we explored the phylogenetic relationships between Spialia orbifer, S. rosae and S. sertorius, and documented two independent events of interspecific gene flow. Our data support that the Iberian endemism S. rosae probably received genetic material from S. orbifer in both mitochondrial and nuclear DNA, which could have contributed to a shift in the ecological preferences of S. rosae. We also show that admixture between S. sertorius and S. orbifer probably occurred in Italy. As a result, the admixed Sicilian populations of S. orbifer are differentiated from the rest of populations both genetically and morphologically, and display signatures of reproductive character displacement in the male genitalia. Additionally, our analyses indicated that genetic material from S. orbifer is present in S. sertorius along the Italian Peninsula. Our findings add to the view that hybridization is a pervasive phenomenon in nature and in butterflies in particular, with important consequences for evolution due to the emergence of novel phenotypes.


Subject(s)
Butterflies , Animals , Butterflies/genetics , DNA, Mitochondrial/genetics , Gene Flow , Genomics , Hybridization, Genetic , Male , Phylogeny
7.
Nature ; 598(7882): 634-640, 2021 10.
Article in English | MEDLINE | ID: mdl-34671162

ABSTRACT

Domestication of horses fundamentally transformed long-range mobility and warfare1. However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling2-4 at Botai, Central Asia around 3500 BC3. Other longstanding candidate regions for horse domestication, such as Iberia5 and Anatolia6, have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 BC, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association7 between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 BC8,9 driving the spread of Indo-European languages10. This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium BC Sintashta culture11,12.


Subject(s)
Domestication , Genetics, Population , Horses , Animals , Archaeology , Asia , DNA, Ancient , Europe , Genome , Grassland , Horses/genetics , Phylogeny
8.
Genome Biol Evol ; 13(7)2021 07 06.
Article in English | MEDLINE | ID: mdl-33988685

ABSTRACT

Advances in phylogenomics contribute toward resolving long-standing evolutionary questions. Notwithstanding, genetic diversity contained within more than a billion biological specimens deposited in natural history museums remains recalcitrant to analysis owing to challenges posed by its intrinsically degraded nature. Yet that tantalizing resource could be critical in overcoming taxon sampling constraints hindering our ability to address major evolutionary questions. We addressed this impediment by developing phyloHyRAD, a new bioinformatic pipeline enabling locus recovery at a broad evolutionary scale from HyRAD-X exome capture of museum specimens of low DNA integrity using a benchtop RAD-derived exome-complexity-reduction probe set developed from high DNA integrity specimens. Our new pipeline can also successfully align raw RNAseq transcriptomic and ultraconserved element reads with the RAD-derived probe catalog. Using this method, we generated a robust timetree for Carabinae beetles, the lack of which had precluded study of macroevolutionary trends pertaining to their biogeography and wing-morphology evolution. We successfully recovered up to 2,945 loci with a mean of 1,788 loci across the exome of specimens of varying age. Coverage was not significantly linked to specimen age, demonstrating the wide exploitability of museum specimens. We also recovered fragmentary mitogenomes compatible with Sanger-sequenced mtDNA. Our phylogenomic timetree revealed a Lower Cretaceous origin for crown group Carabinae, with the extinct Aplothorax Waterhouse, 1841 nested within the genus Calosoma Weber, 1801 demonstrating the junior synonymy of Aplothorax syn. nov., resulting in the new combination Calosomaburchellii (Waterhouse, 1841) comb. nov. This study compellingly illustrates that HyRAD-X and phyloHyRAD efficiently provide genomic-level data sets informative at deep evolutionary scales.


Subject(s)
Coleoptera , Animals , Coleoptera/genetics , DNA, Mitochondrial/genetics , Exome , Phylogeny , Sequence Analysis, DNA/methods
9.
Mol Phylogenet Evol ; 154: 106997, 2021 01.
Article in English | MEDLINE | ID: mdl-33164854

ABSTRACT

Genomic data provide unprecedented power for species delimitation. However, current implementations are still time and resource consuming. In addition, bioinformatic processing is contentious and its impact on downstream analyses is insufficiently understood. Here we employ ddRAD sequencing and a thorough sampling for species delimitation in Zodarion styliferum, a widespread Iberian ant-eating spider. We explore the influence of the loci filtering strategy on the downstream phylogenetic analyses, genomic clustering and coalescent species delimitation. We also assess the accuracy of one mitochondrial (COI) and one nuclear (ITS) barcode for fast and inexpensive species delineation in the group. Our genomic data strongly support two morphologically cryptic but ecologically divergent lineages, mainly restricted to the central-eastern and western parts of the Iberian Peninsula, respectively. Larger matrices with more missing data showed increased genomic diversity, supporting that bioinformatic strategies to maximize matrix completion disproportionately exclude loci with the highest mutation rates. Moderate loci filtering gave the best results across analyses: although larger matrices returned concatenated phylogenies with higher support, middle-sized matrices performed better in genetic structure analyses. COI displayed high diversity and a conspicuous barcode gap, revealing 13 mitochondrial lineages. Mitonuclear discordance is consistent with ancestral isolation in multiple groups, probably in glacial refugia, followed by range expansion and secondary contact that produced genomic homogenization. Several apparently (unidirectionally) introgressed specimens further challenge the accuracy of species identification through mitochondrial barcodes in the group. Conversely, ITS failed to separate both lineages of Z. styliferum. This study shows an extreme case of mitonuclear discordance that highlights the limitations of single molecular barcodes for species delimitation, even in presence of distinct barcode gaps, and brings new light on the effects of parameterization on shallow-divergence studies using RAD data.


Subject(s)
DNA Barcoding, Taxonomic , Genetic Loci , Phylogeny , Restriction Mapping , Sequence Analysis, DNA , Spiders/genetics , Animals , Cell Nucleus/genetics , Cluster Analysis , Electron Transport Complex IV/genetics , Genetics, Population , Genomics , Geography , Likelihood Functions , Mitochondria/genetics , Species Specificity , Spiders/classification
10.
Mol Ecol ; 29(24): 4942-4955, 2020 12.
Article in English | MEDLINE | ID: mdl-33051915

ABSTRACT

Reproductive character displacement occurs when competition for successful breeding imposes a divergent selection on the interacting species, causing a divergence of reproductive traits. Here, we show that a disputed butterfly taxon is actually a case of male wing colour shift, apparently produced by reproductive character displacement. Using double digest restriction-site associated DNA sequencing and mitochondrial DNA sequencing we studied four butterfly taxa of the subgenus Cupido (Lepidoptera: Lycaenidae): Cupido minimus and the taxon carswelli, both characterized by brown males and females, plus C. lorquinii and C. osiris, both with blue males and brown females. Unexpectedly, taxa carswelli and C. lorquinii were close to indistinguishable based on our genomic and mitochondrial data, despite displaying strikingly different male coloration. In addition, we report and analysed a brown male within the C. lorquinii range, which demonstrates that the brown morph occurs at very low frequency in C. lorquinii. Such evidence strongly suggests that carswelli is conspecific with C. lorquinii and represents populations with a fixed male brown colour morph. Considering that these brown populations occur in sympatry with or very close to the blue C. osiris, and that the blue C. lorquinii populations never do, we propose that the taxon carswelli could have lost the blue colour due to reproductive character displacement with C. osiris. Since male colour is important for conspecific recognition during courtship, we hypothesize that the observed colour shift may eventually trigger incipient speciation between blue and brown populations. Male colour seems to be an evolutionarily labile character in the Polyommatinae, and the mechanism described here might be at work in the wide diversification of this subfamily of butterflies.


Subject(s)
Butterflies , Animals , Butterflies/genetics , Color , Female , Male , Reproduction , Sympatry , Wings, Animal
11.
PeerJ ; 8: e9291, 2020.
Article in English | MEDLINE | ID: mdl-32566401

ABSTRACT

Restriction site Associated DNA Sequencing (RAD-Seq) is a technique characterized by the sequencing of specific loci along the genome that is widely employed in the field of evolutionary biology since it allows to exploit variants (mainly Single Nucleotide Polymorphism-SNPs) information from entire populations at a reduced cost. Common RAD dedicated tools, such as STACKS or IPyRAD, are based on all-vs-all read alignments, which require consequent time and computing resources. We present an original method, DiscoSnp-RAD, that avoids this pitfall since variants are detected by exploiting specific parts of the assembly graph built from the reads, hence preventing all-vs-all read alignments. We tested the implementation on simulated datasets of increasing size, up to 1,000 samples, and on real RAD-Seq data from 259 specimens of Chiastocheta flies, morphologically assigned to seven species. All individuals were successfully assigned to their species using both STRUCTURE and Maximum Likelihood phylogenetic reconstruction. Moreover, identified variants succeeded to reveal a within-species genetic structure linked to the geographic distribution. Furthermore, our results show that DiscoSnp-RAD is significantly faster than state-of-the-art tools. The overall results show that DiscoSnp-RAD is suitable to identify variants from RAD-Seq data, it does not require time-consuming parameterization steps and it stands out from other tools due to its completely different principle, making it substantially faster, in particular on large datasets.

12.
Mol Ecol Resour ; 20(5): 1191-1205, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32304133

ABSTRACT

Erosion of biodiversity generated by anthropogenic activities has been studied for decades and in many areas at the species level, using taxa monitoring. In contrast, genetic erosion within species has rarely been tracked, and is often studied by inferring past population dynamics from contemporaneous estimators. An alternative to such inferences is the direct examination of past genes, by analysing museum collection specimens. While providing direct access to genetic variation over time, historical DNA is usually not optimally preserved, and it is necessary to apply genotyping methods based on hybridization-capture to unravel past genetic variation. In this study, we apply such a method (i.e., HyRAD), to large time series of two butterfly species in Finland, and present a new bioinformatic pipeline, namely PopHyRAD, that standardizes and optimizes the analysis of HyRAD data at the within-species level. In the localities for which the data retrieved have sufficient power to accurately examine genetic dynamics through time, we show that genetic erosion has increased across the last 100 years, as revealed by signatures of allele extinctions and heterozygosity decreases, despite local variations. In one of the two butterflies (Erebia embla), isolation by distance also increased through time, revealing the effect of greater habitat fragmentation over time.


Subject(s)
Butterflies , Evolution, Molecular , Animals , Biodiversity , Butterflies/classification , Butterflies/genetics , Ecosystem , Finland , Genetic Variation , Museums , Population Dynamics
13.
Ecol Lett ; 23(2): 305-315, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31762170

ABSTRACT

Geographic isolation substantially contributes to species endemism on oceanic islands when speciation involves the colonisation of a new island. However, less is understood about the drivers of speciation within islands. What is lacking is a general understanding of the geographic scale of gene flow limitation within islands, and thus the spatial scale and drivers of geographical speciation within insular contexts. Using a community of beetle species, we show that when dispersal ability and climate tolerance are restricted, microclimatic variation over distances of only a few kilometres can maintain strong geographic isolation extending back several millions of years. Further to this, we demonstrate congruent diversification with gene flow across species, mediated by Quaternary climate oscillations that have facilitated a dynamic of isolation and secondary contact. The unprecedented scale of parallel species responses to a common environmental driver for evolutionary change has profound consequences for understanding past and future species responses to climate variation.


Subject(s)
Biological Evolution , Climate , Gene Flow , Genetic Speciation , Geography , Islands , Oceans and Seas , Phylogeny
14.
Mol Ecol ; 28(17): 3857-3868, 2019 09.
Article in English | MEDLINE | ID: mdl-31233646

ABSTRACT

Mitochondrial DNA (mtDNA) sequencing has led to an unprecedented rise in the identification of cryptic species. However, it is widely acknowledged that nuclear DNA (nuDNA) sequence data are also necessary to properly define species boundaries. Next generation sequencing techniques provide a wealth of nuclear genomic data, which can be used to ascertain both the evolutionary history and taxonomic status of putative cryptic species. Here, we focus on the intriguing case of the butterfly Thymelicus sylvestris (Lepidoptera: Hesperiidae). We identified six deeply diverged mitochondrial lineages; three distributed all across Europe and found in sympatry, suggesting a potential case of cryptic species. We then sequenced these six lineages using double-digest restriction-site associated DNA sequencing (ddRADseq). Nuclear genomic loci contradicted mtDNA patterns and genotypes generally clustered according to geography, i.e., a pattern expected under the assumption of postglacial recolonization from different refugia. Further analyses indicated that this strong mtDNA/nuDNA discrepancy cannot be explained by incomplete lineage sorting, sex-biased asymmetries, NUMTs, natural selection, introgression or Wolbachia-mediated genetic sweeps. We suggest that this mitonuclear discordance was caused by long periods of geographic isolation followed by range expansions, homogenizing the nuclear but not the mitochondrial genome. These results highlight T. sylvestris as a potential case of multiple despeciation and/or lineage fusion events. We finally argue, since mtDNA and nuDNA do not necessarily follow the same mechanisms of evolution, their respective evolutionary history reflects complementary aspects of past demographic and biogeographic events.


Subject(s)
Butterflies/genetics , Cell Nucleus/genetics , Genomics , Mitochondria/genetics , Animals , Bayes Theorem , Electron Transport Complex IV/genetics , Genetic Loci , Likelihood Functions , Phylogeny , Polymorphism, Single Nucleotide/genetics , Species Specificity
15.
Genome Biol ; 20(1): 98, 2019 05 17.
Article in English | MEDLINE | ID: mdl-31101123

ABSTRACT

BACKGROUND: The diversity and evolutionary success of beetles (Coleoptera) are proposed to be related to the diversity of plants on which they feed. Indeed, the largest beetle suborder, Polyphaga, mostly includes plant eaters among its approximately 315,000 species. In particular, plants defend themselves with a diversity of specialized toxic chemicals. These may impose selective pressures that drive genomic diversification and speciation in phytophagous beetles. However, evidence of changes in beetle gene repertoires driven by such interactions remains largely anecdotal and without explicit hypothesis testing. RESULTS: We explore the genomic consequences of beetle-plant trophic interactions by performing comparative gene family analyses across 18 species representative of the two most species-rich beetle suborders. We contrast the gene contents of species from the mostly plant-eating suborder Polyphaga with those of the mainly predatory Adephaga. We find gene repertoire evolution to be more dynamic, with significantly more adaptive lineage-specific expansions, in the more speciose Polyphaga. Testing the specific hypothesis of adaptation to plant feeding, we identify families of enzymes putatively involved in beetle-plant interactions that underwent adaptive expansions in Polyphaga. There is notable support for the selection hypothesis on large gene families for glutathione S-transferase and carboxylesterase detoxification enzymes. CONCLUSIONS: Our explicit modeling of the evolution of gene repertoires across 18 species identifies putative adaptive lineage-specific gene family expansions that accompany the dietary shift towards plants in beetles. These genomic signatures support the popular hypothesis of a key role for interactions with plant chemical defenses, and for plant feeding in general, in driving beetle diversification.


Subject(s)
Adaptation, Biological , Biological Evolution , Coleoptera/genetics , Herbivory , Multigene Family , Animals , Coleoptera/enzymology , Genomics , Models, Genetic
16.
Ecol Evol ; 9(8): 4452-4464, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31031919

ABSTRACT

Bacterial symbionts are known to facilitate a wide range of physiological processes and ecological interactions for their hosts. In spite of this, caterpillars with highly diverse life histories appear to lack resident microbiota. Gut physiology, endogenous digestive enzymes, and limited social interactions may contribute to this pattern, but the consequences of shifts in social activity and diet on caterpillar microbiota are largely unknown. Phengaris alcon caterpillars undergo particularly dramatic social and dietary shifts when they parasitize Myrmica ant colonies, rapidly transitioning from solitary herbivory to ant tending (i.e., receiving protein-rich regurgitations through trophallaxis). This unique life history provides a model for studying interactions between social living, diet, and caterpillar microbiota. Here, we characterized and compared bacterial communities within P. alcon caterpillars before and after their association with ants, using 16S rRNA amplicon sequencing and quantitative PCR. After being adopted by ants, bacterial communities within P. alcon caterpillars shifted substantially, with a significant increase in alpha diversity and greater consistency in bacterial community composition in terms of beta dissimilarity. We also characterized the bacterial communities within their host ants (Myrmica schencki), food plant (Gentiana cruciata), and soil from ant nest chambers. These data indicated that the aforementioned patterns were influenced by bacteria derived from caterpillars' surrounding environments, rather than through transfers from ants. Thus, while bacterial communities are substantially reorganized over the life cycle of P. alcon caterpillars, it appears that they do not rely on transfers of bacteria from host ants to complete their development.

17.
Mol Ecol ; 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-30010208

ABSTRACT

The habitat template concept applied to a freshwater system indicates that lotic species, or those which occupy permanent habitats along stream courses, are less dispersive than lentic species, or those that occur in more ephemeral aquatic habitats. Thus, populations of lotic species will be more structured than those of lentic species. Stream courses include both flowing water and small, stagnant microhabitats that can provide refuge when streams are low. Many species occur in these microhabitats but remain poorly studied. Here, we present population genetic data for one such species, the tropical diving beetle Exocelina manokwariensis (Dytiscidae), sampled from six localities along a ~300 km transect across the Birds Head Peninsula of New Guinea. Molecular data from both mitochondrial (CO1 sequences) and nuclear (ddRAD loci) regions document fine-scale population structure across populations that are ~45 km apart. Our results are concordant with previous phylogenetic and macroecological studies that applied the habitat template concept to aquatic systems. This study also illustrates that these diverse but mostly overlooked microhabitats are promising study systems in freshwater ecology and evolutionary biology. With the advent of next-generation sequencing, fine-scale population genomic studies are feasible for small nonmodel organisms to help illuminate the effect of habitat stability on species' natural history, population structure and geographic distribution.

18.
Ann Bot ; 122(6): 1005-1017, 2018 11 30.
Article in English | MEDLINE | ID: mdl-29905771

ABSTRACT

Background and Aims: Various studies and conservationist reports have warned about the contraction of the last subtropical Afro-Macaronesian forests. These relict vegetation zones have been restricted to a few oceanic and continental islands around the edges of Africa, due to aridification. Previous studies on relict species have generally focused on glacial effects on narrow endemics; however, little is known about the effects of aridification on the fates of previously widespread subtropical lineages. Methods: Nuclear microsatellites and ecological niche modelling were used to understand observed patterns of genetic diversity in two emblematic species, widely distributed in these ecosystems: Canarina eminii (a palaeoendemic of the eastern Afromontane forests) and Canarina canariensis (a palaeoendemic of the Canarian laurel forests). The software DIYABC was used to test alternative demographic scenarios and an ensemble method was employed to model potential distributions of the selected plants from the end of the deglaciation to the present. Key Results: All the populations assessed experienced a strong and recent population decline, revealing that locally widespread endemisms may also be alarmingly threatened. Conclusions: The detected extinction debt, as well as the extinction spiral to which these populations are subjected, demands urgent conservation measures for the unique, biodiversity-rich ecosystems that they inhabit.


Subject(s)
Campanulaceae/physiology , Climate Change , Genetic Variation , Africa, Eastern , Campanulaceae/genetics , Microsatellite Repeats , Models, Biological , Population Dynamics , Spain
19.
Ecol Evol ; 8(3): 1480-1495, 2018 02.
Article in English | MEDLINE | ID: mdl-29435226

ABSTRACT

Analyzing genetic variation through time and space is important to identify key evolutionary and ecological processes in populations. However, using contemporary genetic data to infer the dynamics of genetic diversity may be at risk of a bias, as inferences are performed from a set of extant populations, setting aside unavailable, rare, or now extinct lineages. Here, we took advantage of new developments in next-generation sequencing to analyze the spatial and temporal genetic dynamics of the grasshopper Oedaleus decorus, a steppic Southwestern-Palearctic species. We applied a recently developed hybridization capture (hyRAD) protocol that allows retrieving orthologous sequences even from degraded DNA characteristic of museum specimens. We identified single nucleotide polymorphisms in 68 historical and 51 modern samples in order to (i) unravel the spatial genetic structure across part of the species distribution and (ii) assess the loss of genetic diversity over the past century in Swiss populations. Our results revealed (i) the presence of three potential glacial refugia spread across the European continent and converging spatially in the Alpine area. In addition, and despite a limited population sample size, our results indicate (ii) a loss of allelic richness in contemporary Swiss populations compared to historical populations, whereas levels of expected heterozygosities were not significantly different. This observation is compatible with an increase in the bottleneck magnitude experienced by central European populations of O. decorus following human-mediated land-use change impacting steppic habitats. Our results confirm that application of hyRAD to museum samples produces valuable information to study genetic processes across time and space.

20.
Mol Ecol ; 27(2): 432-448, 2018 01.
Article in English | MEDLINE | ID: mdl-29226496

ABSTRACT

Tropical mountains are areas of high species richness and endemism. Two historical phenomena may have contributed to this: (i) fragmentation and isolation of habitats may have promoted the genetic differentiation of populations and increased the possibility of allopatric divergence and speciation and (ii) the mountain areas may have allowed long-term population persistence during global climate fluctuations. These two phenomena have been studied using either species occurrence data or estimating species divergence times. However, only few studies have used intraspecific genetic data to analyse the mechanisms by which endemism may emerge at the microevolutionary scale. Here, we use landscape analysis of genomic SNP data sampled from two high-elevation plant species from an archipelago of tropical sky islands (the Trans-Mexican Volcanic Belt) to test for population genetic differentiation, synchronous demographic changes and habitat persistence. We show that genetic differentiation can be explained by the degree of glacial habitat connectivity among mountains and that mountains have facilitated the persistence of populations throughout glacial/interglacial cycles. Our results support the ongoing role of tropical mountains as cradles for biodiversity by uncovering cryptic differentiation and limits to gene flow.


Subject(s)
Biodiversity , Genetics, Population , Genomics , Plants/genetics , Animals , Climate , Ecosystem , Gene Flow , Islands , Mexico , Phylogeny , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...