Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 11(2): e0150501, 2016.
Article in English | MEDLINE | ID: mdl-26919350

ABSTRACT

Myotonic dystrophy type 1 (DM1) is an autosomal dominant genetic disease caused by expansion of a CTG microsatellite in the 3' untranslated region of the DMPK gene. Despite characteristic muscular, cardiac, and neuropsychological symptoms, CTG trinucleotide repeats are unstable both in the somatic and germinal lines, making the age of onset, clinical presentation, and disease severity very variable. A molecular biomarker to stratify patients and to follow disease progression is, thus, an unmet medical need. Looking for a novel biomarker, and given that specific miRNAs have been found to be misregulated in DM1 heart and muscle tissues, we profiled the expression of 175 known serum miRNAs in DM1 samples. The differences detected between patients and controls were less than 2.6 fold for all of them and a selection of six candidate miRNAs, miR-103, miR-107, miR-21, miR-29a, miR-30c, and miR-652 all failed to show consistent differences in serum expression in subsequent validation experiments.


Subject(s)
MicroRNAs/blood , Myotonic Dystrophy/blood , Adult , Biomarkers , Blotting, Southern , Gene Expression Profiling , Humans , Male , Middle Aged , Myotonic Dystrophy/genetics , Trinucleotide Repeats
2.
PLoS One ; 3(2): e1595, 2008 Feb 13.
Article in English | MEDLINE | ID: mdl-18270582

ABSTRACT

Non-coding CUG repeat expansions interfere with the activity of human Muscleblind-like (MBNL) proteins contributing to myotonic dystrophy 1 (DM1). To understand this toxic RNA gain-of-function mechanism we developed a Drosophila model expressing 60 pure and 480 interrupted CUG repeats in the context of a non-translatable RNA. These flies reproduced aspects of the DM1 pathology, most notably nuclear accumulation of CUG transcripts, muscle degeneration, splicing misregulation, and diminished Muscleblind function in vivo. Reduced Muscleblind activity was evident from the sensitivity of CUG-induced phenotypes to a decrease in muscleblind genetic dosage and rescue by MBNL1 expression, and further supported by the co-localization of Muscleblind and CUG repeat RNA in ribonuclear foci. Targeted expression of CUG repeats to the developing eye and brain mushroom bodies was toxic leading to rough eyes and semilethality, respectively. These phenotypes were utilized to identify genetic and chemical modifiers of the CUG-induced toxicity. 15 genetic modifiers of the rough eye phenotype were isolated. These genes identify putative cellular processes unknown to be altered by CUG repeat RNA, and they include mRNA export factor Aly, apoptosis inhibitor Thread, chromatin remodelling factor Nurf-38, and extracellular matrix structural component Viking. Ten chemical compounds suppressed the semilethal phenotype. These compounds significantly improved viability of CUG expressing flies and included non-steroidal anti-inflammatory agents (ketoprofen), muscarinic, cholinergic and histamine receptor inhibitors (orphenadrine), and drugs that can affect sodium and calcium metabolism such as clenbuterol and spironolactone. These findings provide new insights into the DM1 phenotype, and suggest novel candidates for DM1 treatments.


Subject(s)
DNA Repeat Expansion , Trinucleotide Repeats/drug effects , Trinucleotide Repeats/physiology , Animals , Brain , Disease Models, Animal , Drosophila , Drosophila Proteins/genetics , Eye , Gene Dosage , Myotonic Dystrophy/drug therapy , Myotonic Dystrophy/genetics , Nuclear Proteins/genetics , RNA-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL