Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Brain ; 147(2): 649-664, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37703312

ABSTRACT

The unfolded protein response (UPR) is rapidly gaining momentum as a therapeutic target for protein misfolding neurodegenerative diseases, in which its overactivation results in sustained translational repression leading to synapse loss and neurodegeneration. In mouse models of these disorders, from Alzheimer's to prion disease, modulation of the pathway-including by the licensed drug, trazodone-restores global protein synthesis rates with profound neuroprotective effects. However, the precise nature of the translational impairment, in particular the specific proteins affected in disease, and their response to therapeutic UPR modulation are poorly understood. We used non-canonical amino acid tagging (NCAT) to measure de novo protein synthesis in the brains of prion-diseased mice with and without trazodone treatment, in both whole hippocampus and cell-specifically. During disease the predominant nascent proteome changes occur in synaptic, cytoskeletal and mitochondrial proteins in both hippocampal neurons and astrocytes. Remarkably, trazodone treatment for just 2 weeks largely restored the whole disease nascent proteome in the hippocampus to that of healthy, uninfected mice, predominantly with recovery of proteins involved in synaptic and mitochondrial function. In parallel, trazodone treatment restored the disease-associated decline in synapses and mitochondria and their function to wild-type levels. In conclusion, this study increases our understanding of how translational repression contributes to neurodegeneration through synaptic and mitochondrial toxicity via depletion of key proteins essential for their function. Further, it provides new insights into the neuroprotective mechanisms of trazodone through reversal of this toxicity, relevant for the treatment of neurodegenerative diseases via translational modulation.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Prion Diseases , Prions , Trazodone , Mice , Animals , Prions/metabolism , Proteome/metabolism , Proteome/pharmacology , Trazodone/pharmacology , Trazodone/therapeutic use , Trazodone/metabolism , Prion Diseases/drug therapy , Prion Diseases/metabolism , Neurodegenerative Diseases/metabolism , Synapses/metabolism , Alzheimer Disease/metabolism
2.
Int J Mol Sci ; 24(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446074

ABSTRACT

Over the last few years, intense research efforts have been made to anticipate or improve the diagnosis of Alzheimer's disease by detecting blood biomarkers. However, the most promising blood biomarkers identified to date have some limitations, most of them related to the techniques required for their detection. Hence, new blood biomarkers should be identified to improve the diagnosis of AD, better discriminate between AD and mild cognitive impairment (MCI) and identify cognitively unimpaired (CU) older individuals at risk for progression to AD. Our previous studies demonstrated that both the purinergic receptor P2X7 and the tissue-nonspecific alkaline phosphatase ectoenzyme (TNAP) are upregulated in the brains of AD patients. Since both proteins are also present in plasma, we investigated whether plasma P2X7R and TNAP are altered in MCI and AD patients and, if so, their potential role as AD biomarkers. We found that AD but not MCI patients present increased plasma P2X7R levels. Nevertheless, TNAP plasma activity was increased in MCI patients and decreased in the AD group. ROC curve analysis indicated that measuring both parameters has a reasonable discriminating capability to diagnose MCI and AD conditions. In addition to confirming that individuals progressing to MCI have increased TNAP activity in plasma, longitudinal studies also revealed that CU individuals have lower plasma TNAP activity than stable controls. Thus, we propose that P2X7 and TNAP could serve as new plasma biomarkers for MCI and AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alkaline Phosphatase , Biomarkers , Cognitive Dysfunction/diagnosis , Longitudinal Studies , Amyloid beta-Peptides , Disease Progression , tau Proteins
3.
Alzheimers Res Ther ; 15(1): 105, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37287063

ABSTRACT

BACKGROUND: Over recent years, increasing evidence suggests a causal relationship between neurofibrillary tangles (NFTs) formation, the main histopathological hallmark of tauopathies, including Alzheimer's disease (AD), and the ubiquitin-proteasome system (UPS) dysfunction detected in these patients. Nevertheless, the mechanisms underlying UPS failure and the factors involved remain poorly understood. Given that AD and tauopathies are associated with chronic neuroinflammation, here, we explore if ATP, one of the danger-associated molecules patterns (DAMPs) associated with neuroinflammation, impacts on AD-associated UPS dysfunction. METHODS: To evaluate if ATP may modulate the UPS via its selective P2X7 receptor, we combined in vitro and in vivo approaches using both pharmacological and genetic tools. We analyze postmortem samples from human AD patients and P301S mice, a mouse model that mimics pathology observed in AD patients, and those from the new transgenic mouse lines generated, such as P301S mice expressing the UPS reporter UbG76V-YFP or P301S deficient of P2X7R. RESULTS: We describe for the first time that extracellular ATP-induced activation of the purinergic P2X7 receptor (P2X7R) downregulates the transcription of ß5 and ß1 proteasomal catalytic subunits via the PI3K/Akt/GSK3/Nfr2 pathway, leading to their deficient assembly into the 20S core proteasomal complex, resulting in a reduced proteasomal chymotrypsin-like and postglutamyl-like activities. Using UPS-reported mice (UbGFP mice), we identified neurons and microglial cells as the most sensitive cell linages to a P2X7R-mediated UPS regulation. In vivo pharmacological or genetic P2X7R blockade reverted the proteasomal impairment developed by P301S mice, which mimics that were detected in AD patients. Finally, the generation of P301S;UbGFP mice allowed us to identify those hippocampal cells more sensitive to UPS impairment and demonstrate that the pharmacological or genetic blockade of P2X7R promotes their survival. CONCLUSIONS: Our work demonstrates the sustained and aberrant activation of P2X7R caused by Tau-induced neuroinflammation contributes to the UPS dysfunction and subsequent neuronal death associated with AD, especially in the hippocampus.


Subject(s)
Alzheimer Disease , Tauopathies , Mice , Humans , Animals , Alzheimer Disease/complications , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Proteasome Endopeptidase Complex , Receptors, Purinergic P2X7/genetics , Ubiquitin , Neuroinflammatory Diseases , Glycogen Synthase Kinase 3/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mice, Transgenic , Adenosine Triphosphate/metabolism
4.
Methods Mol Biol ; 2510: 355-366, 2022.
Article in English | MEDLINE | ID: mdl-35776336

ABSTRACT

The nervous system is formed by a complex network of neuronal connections. During development, neurons elongate their axons through highly stereotyped anatomical pathways to form precise connections. Defects in these mechanisms are related with neurological disorders. Previous studies have reported that inhibition of the P2X7 receptor, an ionotropic purinergic receptor, promotes axonal growth and branching in cultured neurons. However, little is known about the in vivo mechanism of axonal elongation regulated by P2X7. Here, we detailed a step-by-step method to perform in utero cortical electroporation and quantified the electroporated axons employing accessible and open-source image processing software. This effective surgical procedure manipulates in vivo the gene expression in a discrete population of callosal projection neuron. Thus, a better understanding of the involvement of P2X7 in the in vivo establishment of neuronal circuits might help to clarify the basic biology of several neurodevelopmental disorders and axonal regenerative processes.


Subject(s)
Neurons , Receptors, Purinergic P2X7 , Axons/physiology , Electroporation/methods , Neurons/metabolism , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism
6.
J Vis Exp ; (182)2022 04 13.
Article in English | MEDLINE | ID: mdl-35499346

ABSTRACT

Understanding protein homeostasis in vivo is key to knowing how the cells work in both physiological and disease conditions. The present protocol describes in vivo labeling and subsequent purification of newly synthesized proteins using an engineered mouse line to direct protein labeling to specific cellular populations. It is an inducible line by Cre recombinase expression of L274G-Methionine tRNA synthetase (MetRS*), enabling azidonorleucine (ANL) incorporation to the proteins, which otherwise will not occur. Using the method described here, it is possible to purify cell-type-specific proteomes labeled in vivo and detect subtle changes in protein content due to sample complexity reduction.


Subject(s)
Amino Acyl-tRNA Synthetases , Proteome , Amino Acyl-tRNA Synthetases/genetics , Animals , Chromatography, Affinity , Methionine , Mice , Proteostasis
7.
Prog Neurobiol ; 208: 102173, 2022 01.
Article in English | MEDLINE | ID: mdl-34516970

ABSTRACT

Tauopathies are neurodegenerative diseases characterized by the presence of aberrant intraneuronal aggregates of hyperphosphorylated Tau protein. Recent studies suggest that associated chronic neuroinflammation may contribute to the pathological Tau dissemination. However, the underlying molecular mechanisms remain unknown. Since purinergic P2X7 receptors (P2X7) can sense the rise of extracellular ATP levels associated with neuroinflammation, its involvement in neurodegeneration-associated inflammation was suggested. We found a P2X7 upregulation in patients diagnosed with different tauopathies and in a tauopathy mouse model, P301S mice. In vivo pharmacological or genetic blockade of P2X7 reverted microglial activation in P301S mice leading to a reduction in microglial migratory, secretory, and proliferative capacities, and promoting phagocytic function. Furthermore, it reduced the intraneuronal phosphorylated Tau levels in a GSK3-dependent way and increased extracellular phosphorylated Tau levels by reducing the expression of ectoenzyme TNAP. Accordingly, pharmacological or genetic blockade of P2X7 improved the cellular survival, motor and memory deficits and anxiolytic profile in P301S mice. Contrary, P2X7 overexpression caused a significant worsening of Tau-induced toxicity and aggravated the deteriorated motor and memory deficits in P301S mice. Our results indicate that P2X7 plays a deleterious role in tauopathies and suggest that its blockade may be a promising approach to treat Tauopathies.


Subject(s)
Receptors, Purinergic P2X7 , Tauopathies , Animals , Disease Models, Animal , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3/therapeutic use , Humans , Mice , Mice, Transgenic , Receptors, Purinergic P2X7/therapeutic use , Tauopathies/drug therapy , Tauopathies/metabolism , tau Proteins/metabolism
8.
Trends Neurosci ; 45(1): 41-52, 2022 01.
Article in English | MEDLINE | ID: mdl-34489114

ABSTRACT

Neurons continuously adapt to external cues and challenges, including stimulation, plasticity-inducing signals and aging. These adaptations are critical for neuronal physiology and extended survival. Proteostasis is the process by which cells adjust their protein content to achieve the specific protein repertoire necessary for cellular function. Due to their complex morphology and polarized nature, neurons possess unique proteostatic requirements. Proteostatic control in axons and dendrites must be implemented through regulation of protein synthesis and degradation in a decentralized fashion, but at the same time, it requires integration, at least in part, in the soma. Here, we discuss current understanding of neuronal proteostasis, as well as open questions and future directions requiring further exploration.


Subject(s)
Axons , Neurons , Aging/physiology , Axons/physiology , Humans , Neurons/metabolism , Protein Biosynthesis , Proteostasis
9.
Elife ; 102021 01 06.
Article in English | MEDLINE | ID: mdl-33404500

ABSTRACT

Although mRNAs are localized in the processes of excitatory neurons, it is still unclear whether interneurons also localize a large population of mRNAs. In addition, the variability in the localized mRNA population within and between cell types is unknown. Here we describe the unbiased transcriptomic characterization of the subcellular compartments of hundreds of single neurons. We separately profiled the dendritic and somatic transcriptomes of individual rat hippocampal neurons and investigated mRNA abundances in the soma and dendrites of single glutamatergic and GABAergic neurons. We found that, like their excitatory counterparts, interneurons contain a rich repertoire of ~4000 mRNAs. We observed more cell type-specific features among somatic transcriptomes than their associated dendritic transcriptomes. Finally, using celltype-specific metabolic labeling of isolated neurites, we demonstrated that the processes of glutamatergic and, notably, GABAergic neurons were capable of local translation, suggesting mRNA localization and local translation are general properties of neurons.


Subject(s)
Dendrites/physiology , GABAergic Neurons/physiology , Interneurons/physiology , Single-Cell Analysis , Transcriptome/physiology
10.
Elife ; 92020 04 24.
Article in English | MEDLINE | ID: mdl-32329716

ABSTRACT

We examined the feedback between the major protein degradation pathway, the ubiquitin-proteasome system (UPS), and protein synthesis in rat and mouse neurons. When protein degradation was inhibited, we observed a coordinate dramatic reduction in nascent protein synthesis in neuronal cell bodies and dendrites. The mechanism for translation inhibition involved the phosphorylation of eIF2α, surprisingly mediated by eIF2α kinase 1, or heme-regulated kinase inhibitor (HRI). Under basal conditions, neuronal expression of HRI is barely detectable. Following proteasome inhibition, HRI protein levels increase owing to stabilization of HRI and enhanced translation, likely via the increased availability of tRNAs for its rare codons. Once expressed, HRI is constitutively active in neurons because endogenous heme levels are so low; HRI activity results in eIF2α phosphorylation and the resulting inhibition of translation. These data demonstrate a novel role for neuronal HRI that senses and responds to compromised function of the proteasome to restore proteostasis.


Subject(s)
Cytoplasm/metabolism , Neurons/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteostasis/physiology , eIF-2 Kinase/metabolism , Animals , Antineoplastic Agents/metabolism , Eukaryotic Initiation Factor-2/metabolism , Heme/metabolism , Mice , Phosphorylation , Rats
11.
Elife ; 92020 04 02.
Article in English | MEDLINE | ID: mdl-32238265

ABSTRACT

Protein turnover, the net result of protein synthesis and degradation, enables cells to remodel their proteomes in response to internal and external cues. Previously, we analyzed protein turnover rates in cultured brain cells under basal neuronal activity and found that protein turnover is influenced by subcellular localization, protein function, complex association, cell type of origin, and by the cellular environment (Dörrbaum et al., 2018). Here, we advanced our experimental approach to quantify changes in protein synthesis and degradation, as well as the resulting changes in protein turnover or abundance in rat primary hippocampal cultures during homeostatic scaling. Our data demonstrate that a large fraction of the neuronal proteome shows changes in protein synthesis and/or degradation during homeostatic up- and down-scaling. More than half of the quantified synaptic proteins were regulated, including pre- as well as postsynaptic proteins with diverse molecular functions.


Subject(s)
Homeostasis/physiology , Neurons/metabolism , Proteome/metabolism , Synapses/metabolism , Animals , Animals, Newborn , Cells, Cultured , Hippocampus/cytology , Rats
12.
Nat Protoc ; 14(2): 556-575, 2019 02.
Article in English | MEDLINE | ID: mdl-30610240

ABSTRACT

A big challenge in proteomics is the identification of cell-type-specific proteomes in vivo. This protocol describes how to label, purify and identify cell-type-specific proteomes in living mice. To make this possible, we created a Cre-recombinase-inducible mouse line expressing a mutant methionyl-tRNA synthetase (L274G), which enables the labeling of nascent proteins with the non-canonical amino acid azidonorleucine (ANL). This amino acid can be conjugated to different affinity tags by click chemistry. After affinity purification (AP), the labeled proteins can be identified by tandem mass spectrometry (MS/MS). With this method, it is possible to identify cell-type-specific proteomes derived from living animals, which was not possible with any previously published method. The reduction in sample complexity achieved by this protocol allows for the detection of subtle changes in cell-type-specific protein content in response to environmental changes. This protocol can be completed in ~10 d (plus the time needed to generate the mouse lines, the desired labeling period and MS analysis).


Subject(s)
Azides/metabolism , Click Chemistry/methods , Methionine-tRNA Ligase/genetics , Norleucine/analogs & derivatives , Proteome/isolation & purification , Proteomics/methods , Staining and Labeling/methods , Animals , Gene Expression , Integrases/genetics , Integrases/metabolism , Methionine-tRNA Ligase/metabolism , Mice , Mice, Transgenic , Mutation , Norleucine/metabolism , Organ Specificity , Proteome/biosynthesis , Proteome/genetics , Tandem Affinity Purification/methods , Tandem Mass Spectrometry
13.
Nat Biotechnol ; 35(12): 1196-1201, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29106408

ABSTRACT

Although advances in protein labeling methods have made it possible to measure the proteome of mixed cell populations, it has not been possible to isolate cell-type-specific proteomes in vivo. This is because the existing methods for metabolic protein labeling in vivo access all cell types. We report the development of a transgenic mouse line where Cre-recombinase-induced expression of a mutant methionyl-tRNA synthetase (L274G) enables the cell-type-specific labeling of nascent proteins with a non-canonical amino-acid and click chemistry. Using immunoblotting, imaging and mass spectrometry, we use our transgenic mouse to label and analyze proteins in excitatory principal neurons and Purkinje neurons in vitro (brain slices) and in vivo. We discover more than 200 proteins that are differentially regulated in hippocampal excitatory neurons by exposing mice to an environment with enriched sensory cues. Our approach can be used to isolate, analyze and quantitate cell-type-specific proteomes and their dynamics in healthy and diseased tissues.


Subject(s)
Gene Expression Regulation/genetics , Proteome/genetics , Proteome/metabolism , Proteomics/methods , Amino Acids/analysis , Amino Acids/chemistry , Amino Acids/metabolism , Animals , Click Chemistry , Female , Gene Expression Regulation/physiology , Integrases/genetics , Integrases/metabolism , Male , Methionine-tRNA Ligase/metabolism , Mice , Mice, Transgenic , Neurons/chemistry , Neurons/metabolism , Proteome/analysis , Proteome/chemistry
14.
Science ; 355(6325): 634-637, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28183980

ABSTRACT

MicroRNAs (miRNAs) regulate gene expression by binding to target messenger RNAs (mRNAs) and preventing their translation. In general, the number of potential mRNA targets in a cell is much greater than the miRNA copy number, complicating high-fidelity miRNA-target interactions. We developed an inducible fluorescent probe to explore whether the maturation of a miRNA could be regulated in space and time in neurons. A precursor miRNA (pre-miRNA) probe exhibited an activity-dependent increase in fluorescence, suggesting the stimulation of miRNA maturation. Single-synapse stimulation resulted in a local maturation of miRNA that was associated with a spatially restricted reduction in the protein synthesis of a target mRNA. Thus, the spatially and temporally regulated maturation of pre-miRNAs can be used to increase the precision and robustness of miRNA-mediated translational repression.


Subject(s)
Dendrites/metabolism , Gene Expression Regulation , MicroRNAs/metabolism , Neurons/metabolism , Protein Biosynthesis/genetics , Animals , Cells, Cultured , Fluorescent Dyes/chemistry , Hippocampus/cytology , Male , RNA Cleavage , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Ribonuclease III/genetics , Ribonuclease III/metabolism , Synapses/metabolism
15.
Elife ; 52016 09 28.
Article in English | MEDLINE | ID: mdl-27677849

ABSTRACT

N-glycosylation - the sequential addition of complex sugars to adhesion proteins, neurotransmitter receptors, ion channels and secreted trophic factors as they progress through the endoplasmic reticulum and the Golgi apparatus - is one of the most frequent protein modifications. In mammals, most organ-specific N-glycosylation events occur in the brain. Yet, little is known about the nature, function and regulation of N-glycosylation in neurons. Using imaging, quantitative immunoblotting and mass spectrometry, we show that hundreds of neuronal surface membrane proteins are core-glycosylated, resulting in the neuronal membrane displaying surprisingly high levels of glycosylation profiles that are classically associated with immature intracellular proteins. We report that while N-glycosylation is generally required for dendritic development and glutamate receptor surface expression, core-glycosylated proteins are sufficient to sustain these processes, and are thus functional. This atypical glycosylation of surface neuronal proteins can be attributed to a bypass or a hypo-function of the Golgi apparatus. Core-glycosylation is regulated by synaptic activity, modulates synaptic signaling and accelerates the turnover of GluA2-containing glutamate receptors, revealing a novel mechanism that controls the composition and sensing properties of the neuronal membrane.


Subject(s)
Glycosylation , Ion Channels/metabolism , Neurons/chemistry , Animals , Brain Chemistry , Cell Line , Immunoblotting , Mammals , Mass Spectrometry , Membrane Proteins/metabolism , Optical Imaging
16.
Biochim Biophys Acta ; 1862(8): 1423-32, 2016 08.
Article in English | MEDLINE | ID: mdl-27130438

ABSTRACT

Danon disease, a condition characterized by cardiomyopathy, myopathy, and intellectual disability, is caused by mutations in the LAMP-2 gene. Lamp-2A protein, generated by alternative splicing from the Lamp-2 pre-mRNA, is reported to be the lysosomal membrane receptor essential for the chaperone-mediated autophagic pathway (CMA) aimed to selective protein targeting and translocation into the lysosomal lumen for degradation. To study the relevance of Lamp-2 in protein degradation, a lymphoblastoid cell line was obtained by EBV transformation of B-cells from a Danon patient. The derived cell line showed no significant expression of Lamp-2 protein. The steady-state mRNA and protein levels of alpha-synuclein, IΚBα, Rcan1, and glyceraldehyde-3-phosphate dehydrogenase, four proteins reported to be selective substrates of the CMA pathway, were similar in control and Lamp-2-deficient cells. Inhibition of protein synthesis showed that the half-life of alpha-synuclein, IΚBα, and Rcan1 was similar in control and Lamp-2-deficient cells, and its degradation prevented by proteasome inhibitors. Both in control and Lamp-2-deficient cells, induction of CMA and macroautophagy by serum and aminoacid starvation of cells for 8h produced a similar decrease in IΚBα and Rcan1 protein levels and was prevented by the addition of lysosome and autophagy inhibitors. In conclusion, the results presented here showed that Lamp-2 deficiency in human lymphoblastoid cells did not modify the steady-state levels or the degradation of several protein substrates reported as selective substrates of the CMA pathway.


Subject(s)
Autophagy , B-Lymphocytes/metabolism , Lysosomal-Associated Membrane Protein 2/genetics , Proteolysis , B-Lymphocytes/pathology , Cell Line, Transformed , DNA-Binding Proteins , Glycogen Storage Disease Type IIb , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lysosomal-Associated Membrane Protein 2/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , NF-KappaB Inhibitor alpha/genetics , NF-KappaB Inhibitor alpha/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
18.
J Biol Chem ; 290(48): 28623-30, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26453306

ABSTRACT

Emerging evidence indicates that protein synthesis and degradation are necessary for the remodeling of synapses. These two processes govern cellular protein turnover, are tightly regulated, and are modulated by neuronal activity in time and space. The anisotropic anatomy of the neurons presents a challenge for the study of protein turnover, but the understanding of protein turnover in neurons and its modulation in response to activity can help us to unravel the fine-tuned changes that occur at synapses in response to activity. Here we review the key experimental evidence demonstrating the role of protein synthesis and degradation in synaptic plasticity, as well as the turnover rates of specific neuronal proteins.


Subject(s)
Nerve Tissue Proteins/metabolism , Neurons/metabolism , Protein Biosynthesis/physiology , Proteolysis , Synapses/metabolism , Animals , Humans
19.
Front Aging Neurosci ; 6: 169, 2014.
Article in English | MEDLINE | ID: mdl-25076905

ABSTRACT

Alpha-synuclein (Snca) plays a major role in Parkinson disease (PD). Circulating anti-Snca antibodies has been described in PD patients and healthy controls, but they have been poorly characterized. This study was designed to assess the prevalence of anti-Snca reactivity in human subjects carrying the LRRK2 mutation, idiopathic PD (iPD) patients, and healthy controls and to map the epitopes of the anti-Snca antibodies. Antibodies to Snca were detected by ELISA and immunoblotting using purified recombinant Snca in plasma from individuals carrying LRRK2 mutations (104), iPD patients (59), and healthy controls (83). Epitopes of antibodies were mapped using recombinant protein constructs comprising different regions of Snca. Clear positive anti-Snca reactivity showed no correlation with age, sex, years of evolution, or the disability scores for PD patients and anti-Snca reactivity was not prevalent in human patients with other neurological or autoimmune diseases. Thirteen of the positive individuals were carriers of LRRK2 mutations either non-manifesting (8 out 49 screened) or manifesting (5 positive out 55), three positive (out of 59) were iPD patients, and five positive (out of 83) were healthy controls. Epitope mapping showed that antibodies against the N-terminal (a.a. 1-60) or C-terminal (a.a. 109-140) regions of Snca predominate in LRRK2 mutation carriers and iPD patients, being N122 a critical amino acid for recognition by the anti-C-terminal directed antibodies. Anti-Snca circulating antibodies seem to cluster within families carrying the LRRK2 mutation indicating possible genetic or common environmental factors in the generation of anti-Snca antibodies. These results suggest that case-controls' studies are insufficient and further studies in family cohorts of patients and healthy controls should be undertaken, to progress in the understanding of the possible relationship of anti-Snca antibodies and PD pathology.

20.
Biochim Biophys Acta ; 1843(2): 352-65, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24315858

ABSTRACT

Alpha-synuclein is a small protein implicated in the pathophysiology of Parkinson's disease (PD). We have investigated the mechanism of cleavage of alpha-synuclein by the 20S proteasome. Alpha-synuclein interacts with the C8 (α7) subunit of the proteasome. The N-terminal part of alpha-synuclein (amino acids 1-60) is essential for its proteasomal degradation and analysis of peptides released from proteasomal digestion allows concluding that initial cleavages occur within the N-terminal region of the molecule. Aggregated alpha-synucleins are also degraded by the proteasome with a reduced rate, likely due to Met oxidation. In fact, mild oxidation of alpha-synuclein with H2O2 resulted in the inhibition of its degradation by the proteasome, mainly due to oxidation of Met 1 and 5 of alpha-synuclein. The inhibition was reversed by treatment of the oxidized protein with methionine sulfoxide reductases (MsrA plus MsrB). Similarly, treatment with H2O2 of N2A cells transfected with alpha-synuclein resulted in the inhibition of its degradation that was also reverted by co-transfection of MsrA plus MsrB. These results clearly indicate that oxidative stress, a common feature of PD and other synucleinopathies, promotes a RedOx change in the proteostasis of alpha-synuclein due to Met oxidation and reduced proteasomal degradation; compromised reversion of those oxidative changes would result in the accumulation of oxidative damaged alpha-synuclein likely contributing to the pathogenesis of PD.


Subject(s)
Methionine/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , alpha-Synuclein/metabolism , Amino Acid Sequence , Animals , Humans , Hydrogen Peroxide/pharmacology , Immunoblotting , Methionine Sulfoxide Reductases/metabolism , Mice , Molecular Sequence Data , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Peptides/chemistry , Peptides/metabolism , Protein Binding/drug effects , Protein Interaction Mapping , Protein Structure, Quaternary , Protein Subunits/metabolism , Proteolysis/drug effects , Rats , Silver Staining , alpha-Synuclein/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...