Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Braz J Microbiol ; 46(3): 929-36, 2015.
Article in English | MEDLINE | ID: mdl-26413080

ABSTRACT

Pseudomonas syringae pv. maculicola is a natural pathogen of members of the Brassicaceae plant family. Using a transposon-based mutagenesis strategy in Pseudomonas syringaepv. maculicola M2 (PsmM2), we conducted a genetic screen to identify mutants that were capable of growing in M9 medium supplemented with a crude extract from the leaves of Arabidopsis thaliana. A mutant containing a transposon insertion in the hrpZ gene (PsmMut8) was unable to infect adult plants from Arabidopsis thaliana or Brassica oleracea, suggesting a loss of pathogenicity. The promotorless cat reporter present in the gene trap was expressed if PsmMut8 was grown in minimal medium (M9) supplemented with the leaf extract but not if grown in normal rich medium (KB). We conducted phylogenetic analysis using hrpAZB genes, showing the classical 5-clade distribution, and nucleotide diversity analysis, showing the putative position for selective pressure in this operon. Our results indicate that the hrpAZB operon from Pseudomonas syringaepv. maculicola M2 is necessary for its pathogenicity and that its diversity would be under host-mediated diversifying selection.


Subject(s)
Arabidopsis/microbiology , Bacterial Outer Membrane Proteins/genetics , Brassica/microbiology , Plant Diseases/microbiology , Pseudomonas syringae/genetics , Pseudomonas syringae/pathogenicity , Base Sequence , Culture Media , DNA Transposable Elements/genetics , Genes, Bacterial , Mutation/genetics , Plant Leaves/microbiology , Promoter Regions, Genetic/genetics
2.
Braz. j. microbiol ; 46(3): 929-936, July-Sept. 2015. tab, ilus
Article in English | LILACS | ID: lil-755799

ABSTRACT

Pseudomonas syringae pv. maculicola is a natural pathogen of members of the Brassicaceae plant family. Using a transposon-based mutagenesis strategy in Pseudomonas syringaepv. maculicola M2 (PsmM2), we conducted a genetic screen to identify mutants that were capable of growing in M9 medium supplemented with a crude extract from the leaves of Arabidopsis thaliana. A mutant containing a transposon insertion in the hrpZ gene (PsmMut8) was unable to infect adult plants from Arabidopsis thaliana or Brassica oleracea, suggesting a loss of pathogenicity. The promotorless cat reporter present in the gene trap was expressed if PsmMut8 was grown in minimal medium (M9) supplemented with the leaf extract but not if grown in normal rich medium (KB). We conducted phylogenetic analysis using hrpAZB genes, showing the classical 5-clade distribution, and nucleotide diversity analysis, showing the putative position for selective pressure in this operon. Our results indicate that the hrpAZB operon from Pseudomonas syringaepv. maculicola M2 is necessary for its pathogenicity and that its diversity would be under host-mediated diversifying selection.

.


Subject(s)
Arabidopsis/microbiology , Bacterial Outer Membrane Proteins/genetics , Brassica/microbiology , Plant Diseases/microbiology , Pseudomonas syringae/genetics , Pseudomonas syringae/pathogenicity , Base Sequence , Culture Media , DNA Transposable Elements/genetics , Genes, Bacterial , Mutation/genetics , Plant Leaves/microbiology , Promoter Regions, Genetic/genetics
3.
Braz. j. microbiol ; 46(3): l9369-936, July-Sept. 2015. tab, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1469611

ABSTRACT

Pseudomonas syringae pv. maculicola is a natural pathogen of members of the Brassicaceae plant family. Using a transposon-based mutagenesis strategy in Pseudomonas syringaepv. maculicola M2 (PsmM2), we conducted a genetic screen to identify mutants that were capable of growing in M9 medium supplemented with a crude extract from the leaves of Arabidopsis thaliana. A mutant containing a transposon insertion in the hrpZ gene (PsmMut8) was unable to infect adult plants from Arabidopsis thaliana or Brassica oleracea, suggesting a loss of pathogenicity. The promotorless cat reporter present in the gene trap was expressed if PsmMut8 was grown in minimal medium (M9) supplemented with the leaf extract but not if grown in normal rich medium (KB). We conducted phylogenetic analysis using hrpAZB genes, showing the classical 5-clade distribution, and nucleotide diversity analysis, showing the putative position for selective pressure in this operon. Our results indicate that the hrpAZB operon from Pseudomonas syringaepv. maculicola M2 is necessary for its pathogenicity and that its diversity would be under host-mediated diversifying selection.


Subject(s)
Arabidopsis/microbiology , Brassica/microbiology , Plant Diseases/microbiology , Bacterial Outer Membrane Proteins/genetics , Pseudomonas syringae/genetics , Pseudomonas syringae/pathogenicity , DNA Transposable Elements/genetics , Plant Leaves/microbiology , Genes, Bacterial , Culture Media , Mutation/genetics , Promoter Regions, Genetic/genetics , Base Sequence
4.
J Exp Bot ; 63(10): 3829-42, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22442422

ABSTRACT

The life cycle of flowering plants alternates between a predominant sporophytic (diploid) and an ephemeral gametophytic (haploid) generation that only occurs in reproductive organs. In Arabidopsis thaliana, the female gametophyte is deeply embedded within the ovule, complicating the study of the genetic and molecular interactions involved in the sporophytic to gametophytic transition. Massively parallel signature sequencing (MPSS) was used to conduct a quantitative large-scale transcriptional analysis of the fully differentiated Arabidopsis ovule prior to fertilization. The expression of 9775 genes was quantified in wild-type ovules, additionally detecting >2200 new transcripts mapping to antisense or intergenic regions. A quantitative comparison of global expression in wild-type and sporocyteless (spl) individuals resulted in 1301 genes showing 25-fold reduced or null activity in ovules lacking a female gametophyte, including those encoding 92 signalling proteins, 75 transcription factors, and 72 RNA-binding proteins not reported in previous studies based on microarray profiling. A combination of independent genetic and molecular strategies confirmed the differential expression of 28 of them, showing that they are either preferentially active in the female gametophyte, or dependent on the presence of a female gametophyte to be expressed in sporophytic cells of the ovule. Among 18 genes encoding pentatricopeptide-repeat proteins (PPRs) that show transcriptional activity in wild-type but not spl ovules, CIHUATEOTL (At4g38150) is specifically expressed in the female gametophyte and necessary for female gametogenesis. These results expand the nature of the transcriptional universe present in the ovule of Arabidopsis, and offer a large-scale quantitative reference of global expression for future genomic and developmental studies.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Gene Expression Profiling , Ovule/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , High-Throughput Nucleotide Sequencing , Ovule/growth & development , Ovule/metabolism
5.
Science ; 326(5956): 1078, 2009 Nov 20.
Article in English | MEDLINE | ID: mdl-19965420

ABSTRACT

Maize domestication (Zea mays ssp. mays L.) resulted in a wide diversity of native landraces that represent an invaluable source of genetic information for exploring natural variation and genome evolution. We sequenced de novo the approximately 2-gigabase genome of the Mexican landrace Palomero Toluqueño (Palomero) and compared its features to those of the modern inbred line B73. We revealed differences concordant with its ancient origin and identified chromosomal regions of low nucleotide variability that contain domestication genes involved in heavy-metal detoxification. Our results indicate that environmental changes were important selective forces acting on maize domestication.


Subject(s)
Genes, Plant , Genome, Plant , Metals, Heavy/metabolism , Selection, Genetic , Zea mays/genetics , Zea mays/metabolism , Chromosome Mapping , Chromosomes, Plant/genetics , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Genetic Variation , Metals, Heavy/analysis , Metals, Heavy/toxicity , Molecular Sequence Data , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Soil/analysis , Zea mays/growth & development
6.
Plant Cell ; 20(11): 3038-49, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19028964

ABSTRACT

In Angiosperms, the male gametes are delivered to the female gametes through the maternal reproductive tissue by the pollen tube. Upon arrival, the pollen tube releases the two sperm cells, permitting double fertilization to take place. Although the critical role of the female gametophyte in pollen tube reception has been demonstrated, the underlying mechanisms remain poorly understood. Here, we describe lorelei, an Arabidopsis thaliana mutant impaired in sperm cell release, reminiscent of the feronia/sirène mutant. Pollen tubes reaching lorelei embryo sacs frequently do not rupture but continue to grow in the embryo sac. Furthermore, lorelei embryo sacs continue to attract additional pollen tubes after arrival of the initial pollen tube. The LORELEI gene is expressed in the synergid cells prior to fertilization and encodes a small plant-specific putative glucosylphosphatidylinositol-anchored protein (GAP). These results provide support for the concept of signaling mechanisms at the synergid cell membrane by which the female gametophyte recognizes the arrival of a compatible pollen tube and promotes sperm release. Although GAPs have previously been shown to play critical roles in initiation of fertilization in mammals, flowering plants appear to have independently evolved reproductive mechanisms that use the unique features of these proteins within a similar biological context.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Germ Cells/growth & development , Pollen Tube/growth & development , Amino Acid Sequence , Arabidopsis/embryology , Arabidopsis Proteins/genetics , Chromosome Mapping , DNA, Plant/genetics , Fertilization/genetics , Glycosylphosphatidylinositols/metabolism , Molecular Sequence Data , Mutation , Pollen Tube/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...