Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Prep Biochem Biotechnol ; 52(8): 872-884, 2022.
Article in English | MEDLINE | ID: mdl-34865598

ABSTRACT

Biosurfactant production at reactor level by Serratia marcescens SmSA was optimized and evaluated to enhance the heavy oil recovery on carbonate rocks. Temperature, agitation, and carbon/nitrogen (C/N) ratio were evaluated to optimize biosurfactant production by using a Taguchi (L9) design. The best conditions (C/N ratio: 6, 25 °C, and agitation: 100 rpm) were used to scale up the biosurfactant production with a 3-L bioreactor. The best aeration for biosurfactant production was 0.66 volume of air per volume of liquid per minute (vvm), producing the lowest surface tension (26 mN/m) in 14 h, with a biosurfactant yield of 14.26 g/L as a crude product and 2.85 g/L as a purified product, and a critical micelle concentration of 280 mg/L. The biosurfactant was characterized as a lipopeptide, and it was stable under extreme conditions: pH (2-12), salinity up to 200 g/L, and temperature up to 150 °C confirmed by thermogravimetric analysis. Enhanced oil recovery test was carried out with a carbonate core and heavy oil under reservoir conditions, obtaining an additional recovery of 8%, due to reduced interfacial tension and modified wettability of the rock. These findings highlight the potential application of S. marcescens SmSA biosurfactant in enhanced oil recovery.


Subject(s)
Lipopeptides , Serratia marcescens , Carbon , Hydrogen-Ion Concentration , Nitrogen , Surface Tension , Surface-Active Agents/chemistry
2.
Article in English | MEDLINE | ID: mdl-27617185

ABSTRACT

We present experimental evidence under low-dose conditions transmission electron microscopy for the unfolding of the evolving changes in carbon soot during mechanical milling. The milled soot shows evolving changes as a function of the milling severity or time. Those changes are responsible for the transformation from amorphous carbon to graphenes, graphitic carbon, and highly ordered structures such as morphed graphenes, namely Rh6 and Rh6-II. The morphed graphenes are corrugated layers of carbon with cross-linked covalently nature and sp2- or sp3-type allotropes. Electron microscopy and numerical simulations are excellent complementary tools to identify those phases. Furthermore, the TEAM 05 microscope is an outstanding tool to resolve the microstructure and prevent any damage to the sample. Other characterization techniques such as XRD, Raman, and XPS fade to convey a true identification of those phases because the samples are usually blends or mixes of the mentioned phases.

3.
J Colloid Interface Sci ; 301(2): 352-9, 2006 Sep 15.
Article in English | MEDLINE | ID: mdl-16843479

ABSTRACT

A model is proposed to account for the interaction energy and adhesion force between petroleum asphaltenes and metallic surfaces. It is assumed that the total molecule-surface interaction potential may be constructed through superposition of corresponding interactions with a relevant number of atomic layers forming the substrate and resorting to the Lindhard continuum planar potential (CPP) approximation, which requires only of knowledge of binary molecule-atom interactions. Molecular mechanics (MM) calculations are performed to generate the average binary interaction between the asphaltene molecule and an atom in the substrate, which in turn is represented by a parameterized analytical--physically sound--expression. The resulting CPP yields an analytical expression representing the interaction between the asphaltene molecule and each substrate layer. To validate the method, pilot calculations are performed for a sample asphaltene molecule with a fixed orientation relative to metallic surfaces of iron, aluminum, and chromium. Comparison between corresponding CPP and MM calculations for the asphaltene-plane (A-P) and asphaltene-substrate (A-S) interactions indicate reasonable agreement pointing to the adequacy of the CPP method to represent molecule-surface interactions. Also, the effect of a surrounding (i.e., solvent) medium is addressed with the use of a dielectric constant, epsilon, incorporated in the molecule-atom potential. Finally, a discussion is presented on the applicability of the method to generate an analytical universal expression for asphaltene-metallic wall interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...