Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Appl Microbiol Biotechnol ; 108(1): 390, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910175

ABSTRACT

Microalgae are gaining attention as they are considered green fabrics able to synthesize many bioactive metabolites, with unique biological activities. However, their use at an industrial scale is still a challenge because of the high costs related to upstream and downstream processes. Here, a biorefinery approach was proposed, starting from the biomass of the green microalga Pseudococcomyxa simplex for the extraction of two classes of molecules with a potential use in the cosmetic industry. Carotenoids were extracted first by an ultrasound-assisted extraction, and then, from the residual biomass, lipids were obtained by a conventional extraction. The chemical characterization of the ethanol extract indicated lutein, a biosynthetic derivative of α-carotene, as the most abundant carotenoid. The extract was found to be fully biocompatible on a cell-based model, active as antioxidant and with an in vitro anti-aging property. In particular, the lutein-enriched fraction was able to activate Nrf2 pathway, which plays a key role also in aging process. Finally, lipids were isolated from the residual biomass and the isolated fatty acids fraction was composed by palmitic and stearic acids. These molecules, fully biocompatible, can find application as emulsifiers and softener agents in cosmetic formulations. Thus, an untapped microalgal species can represent a sustainable source for cosmeceutical formulations. KEY POINTS: • Pseudococcomyxa simplex has been explored in a cascade approach. • Lutein is the main extracted carotenoid and has antioxidant and anti-aging activity. • Fatty acids are mainly composed of palmitic and stearic acids.


Subject(s)
Cosmetics , Microalgae , Microalgae/metabolism , Microalgae/chemistry , Cosmetics/chemistry , Carotenoids/chemistry , Carotenoids/isolation & purification , Biomass , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Lutein/isolation & purification , Lutein/chemistry , Lutein/metabolism , Humans , Fatty Acids/chemistry
2.
Int J Mol Sci ; 25(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38612712

ABSTRACT

Tetraselmis chuii is an EFSA-approved novel food and dietary supplement with increasing use in nutraceutical production worldwide. This study investigated the neuroprotective potential of bioactive compounds extracted from T. chuii using green biobased solvents (ethyl acetate, AcOEt, and cyclopentyl methyl ether, CPME) under pressurized liquid extraction (PLE) conditions and supercritical fluid extraction (SFE). Response surface optimization was used to study the effect of temperature and solvent composition on the neuroprotective properties of the PLE extracts, including anticholinergic activity, reactive oxygen/nitrogen species (ROS/RNS) scavenging capacity, and anti-inflammatory activity. Optimized extraction conditions of 40 °C and 34.9% AcOEt in CPME resulted in extracts with high anticholinergic and ROS/RNS scavenging capacity, while operation at 180 °C and 54.1% AcOEt in CPME yielded extracts with potent anti-inflammatory properties using only 20 min. Chemical characterization revealed the presence of carotenoids (neoxanthin, violaxanthin, zeaxanthin, α- and ß-carotene) known for their anti-cholinesterase, antioxidant, and anti-inflammatory potential. The extracts also exhibited high levels of omega-3 polyunsaturated fatty acids (PUFAs) with a favorable ω-3/ω-6 ratio (>7), contributing to their neuroprotective and anti-inflammatory effects. Furthermore, the extracts were found to be safe to use, as cytotoxicity assays showed no observed toxicity in HK-2 and THP-1 cell lines at or below a concentration of 40 µg mL-1. These results highlight the neuroprotective potential of Tetraselmis chuii extracts, making them valuable in the field of nutraceutical production and emphasize the interest of studying new green solvents as alternatives to conventional toxic solvents.


Subject(s)
Chlorophyta , Fatty Acids, Omega-3 , Microalgae , Reactive Oxygen Species , Cholinergic Antagonists , Dietary Supplements , Anti-Inflammatory Agents/pharmacology , Solvents
3.
Nat Metab ; 6(2): 209-225, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38243131

ABSTRACT

Coenzyme Q (Q) is a key lipid electron transporter, but several aspects of its biosynthesis and redox homeostasis remain undefined. Various flavoproteins reduce ubiquinone (oxidized form of Q) to ubiquinol (QH2); however, in eukaryotes, only oxidative phosphorylation (OXPHOS) complex III (CIII) oxidizes QH2 to Q. The mechanism of action of CIII is still debated. Herein, we show that the Q reductase electron-transfer flavoprotein dehydrogenase (ETFDH) is essential for CIII activity in skeletal muscle. We identify a complex (comprising ETFDH, CIII and the Q-biosynthesis regulator COQ2) that directs electrons from lipid substrates to the respiratory chain, thereby reducing electron leaks and reactive oxygen species production. This metabolon maintains total Q levels, minimizes QH2-reductive stress and improves OXPHOS efficiency. Muscle-specific Etfdh-/- mice develop myopathy due to CIII dysfunction, indicating that ETFDH is a required OXPHOS component and a potential therapeutic target for mitochondrial redox medicine.


Subject(s)
Electron-Transferring Flavoproteins , Oxidative Phosphorylation , Ubiquinone , Animals , Mice , Electron-Transferring Flavoproteins/genetics , Electron-Transferring Flavoproteins/metabolism , Homeostasis , Lipids , Muscle, Skeletal/metabolism , Ubiquinone/metabolism
4.
Molecules ; 28(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37049907

ABSTRACT

Microalgal biomass represents a very interesting biological feedstock to be converted into several high-value products in a biorefinery approach. In this study, the cyanobacterium Synechocystis sp. PCC6803 was used to obtain different classes of molecules: proteins, carotenoids and lipids by using a cascade approach. In particular, the protein extract showed a selective cytotoxicity towards cancer cells, whereas carotenoids were found to be active as antioxidants both in vitro and on a cell-based model. Finally, for the first time, lipids were recovered from Synechocystis biomass as the last class of molecules and were successfully used as an alternative substrate for the production of polyhydroxyalkanoate (PHA) by the native PHA producer Pseudomonas resinovorans. Taken together, our results lead to a significant increase in the valorization of Synechocystis sp. PCC6803 biomass, thus allowing a possible offsetting of the process costs.


Subject(s)
Polyhydroxyalkanoates , Synechocystis , Synechocystis/metabolism , Polyhydroxyalkanoates/metabolism
5.
Animals (Basel) ; 13(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36899762

ABSTRACT

The aim of this study was to evaluate the effect of a phytomelatonin-rich diet, including by-products from the food industry, on ram sperm quality and seminal plasma composition. Melatonin content in several by-products before and after in vitro ruminal and abomasal digestion was determined by HPLC-ESI-MS/MS. Finally, 20% of a mix of grape pulp with pomegranate and tomato pomaces was included in the rams' diet, constituting the phytomelatonin-rich diet. Feeding the rams with this diet resulted in an increase in seminal plasma melatonin levels compared with the control group (commercial diet) in the third month of the study. In addition, percentages higher than those in the control group of morphologically normal viable spermatozoa with a low content of reactive oxygen species were observed from the second month onwards. However, the antioxidant effect does not seem to be exerted through the modulation of the antioxidant enzymes since the analysis of the activities of catalase, glutathione reductase and glutathione peroxidase in seminal plasma revealed no significant differences between the two experimental groups. In conclusion, this study reveals, for the first time, that a phytomelatonin-rich diet can improve seminal characteristics in rams.

6.
Antioxidants (Basel) ; 12(2)2023 Jan 22.
Article in English | MEDLINE | ID: mdl-36829811

ABSTRACT

Lemon verbena infusions are widely appreciated due to their agreeable lemony flavor and medicinal properties. In this study, the antioxidant potential, phenolic profile, and free amino acid profile of lemon verbena infusions from different commercial brands were studied. Characterization by UHPLC-QTOF-HRMS allowed the identification of 34 phenolics. The free amino acid profile (by RP-HPLC-FLD) was assessed for the first time, allowing the quantification of 16 amino acids. Furthermore, the infusions showed high antioxidant activity by different assays (ferric reducing antioxidant power, DPPH• scavenging, and oxygen radical absorbance capacity assays), which in turn were significantly correlated with total phenolics and total flavonoid contents. Notwithstanding, phenylalanine seemed to have also an impact on the antioxidant activity of the infusions, with significant correlations found. Finally, significant differences were found in all the evaluated parameters for one of the four commercial brands herein studied, which was possibly related to the different geographical origins of this sample. Overall, these lemon verbena infusions proved to be rich in a huge variety of bioactive compounds that can provide therapeutic potential.

7.
ACS Sustain Chem Eng ; 11(1): 381-389, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36643001

ABSTRACT

Here, an unprecedented biorefinery approach has been designed to recover high-added value bioproducts starting from the culture ofPorphyridium cruentum. This unicellular marine red alga can secrete and accumulate high-value compounds that can find applications in a wide variety of industrial fields. 300 ± 67 mg/L of exopolysaccharides were obtained from cell culture medium; phycoerythrin was efficiently extracted (40% of total extract) and isolated by single chromatography, with a purity grade that allowed the crystal structure determination at 1.60 Å; a twofold increase in ß-carotene yield was obtained from the residual biomass; the final residual biomass was found to be enriched in saturated fatty acids. Thus, for the first time, a complete exploitation ofP. cruentumculture was set up.

8.
Crit Rev Anal Chem ; 53(6): 1239-1262, 2023.
Article in English | MEDLINE | ID: mdl-34915787

ABSTRACT

Natural carotenoids are secondary metabolites that exhibit antioxidant, anti-inflammatory, and anti-cancer properties. These types of compounds are highly demanded by pharmaceutical, cosmetic, nutraceutical, and food industries, leading to the search for new natural sources of carotenoids. In recent years, the production of carotenoids from bacteria has become of great interest for industrial applications. In addition to carotenoids with C40-skeletons, some bacteria have the ability to synthesize characteristic carotenoids with C30-skeletons. In this regard, a great variety of methodologies for the extraction and identification of bacterial carotenoids has been reported and this is the first review that condenses most of this information. To understand the diversity of carotenoids from bacteria, we present their biosynthetic origin in order to focus on the methodologies employed in their extraction and characterization. Special emphasis has been made on high-performance liquid chromatography-mass spectrometry (HPLC-MS) for the analysis and identification of bacterial carotenoids. We end up this review showing their potential commercial use. This review is proposed as a guide for the identification of these metabolites, which are frequently reported in new bacteria strains.


Subject(s)
Bacteria , Carotenoids , Carotenoids/analysis , Carotenoids/chemistry , Carotenoids/metabolism , Bacteria/metabolism , Antioxidants/metabolism , Mass Spectrometry , Chromatography, High Pressure Liquid
9.
Methods Mol Biol ; 2571: 45-55, 2023.
Article in English | MEDLINE | ID: mdl-36152149

ABSTRACT

This methodological work demonstrates the potential of metabolomic approaches based on liquid chromatography coupled to high-resolution mass spectrometry (LC-ESI(+/-)-HRMS) to investigate the antiproliferative capacity of underexplored biomasses (e.g., Passiflora mollissima seeds and Physalys peruviana calyx), by evaluating the molecular changes induced at the metabolite expression levels on HT-29 human colon cancer cells. This protocol describes in detail the optimal conditions to obtain bioactive extracts by pressurized liquid extraction (PLE), the experimental procedure to grow and treat HT-29 human colon cancer cells and CCD-18Co normal human colon fibroblasts with the target extracts, the metabolites extraction from the cytosolic fraction, and subsequent metabolomic fingerprinting. After treatment for 48 and 72 h, the viability of HT-29 colon cancer cells is markedly affected, and metabolites can be extracted for investigation. Following the proposed metabolomic data analysis and interpretation workflow, altered cellular redox homeostasis, as well as inactivation or dysfunction on other metabolic pathways, constitutes valuable biological information to understand the mechanisms underlying the antiproliferative effect.


Subject(s)
Colonic Neoplasms , Fruit , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Fruit/metabolism , Humans , Metabolomics/methods , Plant Extracts/chemistry , Plant Extracts/pharmacology
10.
Antioxidants (Basel) ; 13(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38247483

ABSTRACT

Sweet cherry (Prunus avium L.) is among the most valued fruits due to its organoleptic properties and nutritional worth. Cherry stems are rich in bioactive compounds, known for their anti-inflammatory and antioxidant properties. Innumerable studies have indicated that some bioactive compounds can modulate sugar absorption in the small intestine. In this study, the phenolic profile of a cherry stem infusion was investigated, as well as its capacity to modulate intestinal glucose and fructose transport in Caco-2 cells. Long-term (24 h) exposure to cherry stem infusion (25%, v/v) significantly reduced glucose (3H-DG) and fructose (14C-FRU) apical uptake, reduced the apical-to-basolateral Papp to 3H-DG, and decreased mRNA expression levels of the sugar transporters SGLT1, GLUT2 and GLUT5. Oxidative stress (induced by tert-butyl hydroperoxide) caused an increase in 3H-DG uptake, which was abolished by the cherry stem infusion. These findings suggest that cherry stem infusion can reduce the intestinal absorption of both glucose and fructose by decreasing the gene expression of their membrane transporters. Moreover, this infusion also appears to be able to counteract the stimulatory effect of oxidative stress upon glucose intestinal uptake. Therefore, it can be a potentially useful compound for controlling hyperglycemia, especially in the presence of increased intestinal oxidative stress levels.

11.
Front Nutr ; 9: 924596, 2022.
Article in English | MEDLINE | ID: mdl-35782945

ABSTRACT

Plants and agri-food by-products represent a wide and renewable source of bioactive compounds with neuroprotective properties. In this research, various green extraction techniques were employed to recover bioactive molecules from Kalanchoe daigremontiana (kalanchoe), epicarp of Cyphomandra betacea (tamarillo), and cooperage woods from Robinia pseudoacacia (acacia) and Nothofagus pumilio (lenga), as well as a reference extract (positive control) from Rosmarinus officinalis L. (rosemary). The neuroprotective capacity of these plant extracts was evaluated in a set of in vitro assays, including enzymatic [acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and lipoxygenase (LOX)] and antioxidant [ABTS, and reactive oxygen and nitrogen species (ROS and RNS)] bioactivity tests. Extracts were also submitted to a parallel artificial membrane permeability assay mimicking the blood-brain barrier (PAMPA-BBB) and to two cell viability assays in HK-2 and SH-SY5Y cell lines. Comprehensive phytochemical profiling based on liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (LC-Q-TOF-MS) analysis showed enriched content of phenolic and terpenoid compounds in the target extracts. Moreover, in vitro bioactivity tests showed promising neuroprotective capacity, particularly for supercritical-fluid extraction (SFE) extract from acacia (ABTS IC50 = 0.11 µg ml-1; ROS IC50 = 1.56 µg ml-1; AChE IC50 = 4.23 µg ml-1; BChE IC50 = 1.20 µg ml-1; and LOX IC50 = 4.37 µg ml-1), whereas PAMPA-BBB assays revealed high perfusion capacity of some representative compounds, such as phenolic acids or flavonoids. Regarding cytotoxic assays, tamarillo and rosemary SFE extracts can be considered as non-toxic, acacia SFE extract and lenga pressurized liquid extraction (PLE) extract as mild-cytotoxic, and kalanchoe as highly toxic extracts. The obtained results demonstrate the great potential of the studied biomass extracts to be transformed into valuable food additives, food supplements, or nutraceuticals with promising neuroprotective properties.

12.
Front Plant Sci ; 13: 933209, 2022.
Article in English | MEDLINE | ID: mdl-35874019

ABSTRACT

Mercury (Hg) contamination is increasing worldwide in both wild ecosystems and agricultural soils due to natural processes, but mostly to anthropic activities. The molecular mechanisms involved in Hg toxicity and tolerance in plants have been extensively studied; however, the role of flavonoids in response to Hg stress remains to be investigated. We conducted a metabolomic study to analyze the changes induced at the secondary metabolite level in three Hg-tolerant and one Hg-sensitive Medicago truncatula cultivars. A total of 46 flavonoid compounds, classified into five different flavonoid families: anthocyanidins, flavones, isoflavones, pterocarpan flavonoids, and flavanones, along with their respective glycoconjugate derivatives, were identified in leaf and root tissues. The synthesis of free isoflavones, followed by monoglycosylation and further malonylation was shown to be characteristic of root samples, whereas higher glycosylation, followed by further acylation with coumaric and ferulic acid was characteristic of leaf tissues. While minor changes were observed in leaves, significant quantitative changes could be observed in roots upon Hg treatment. Some flavonoids were strongly upregulated in roots, including malonylglucosides of biochanin A, formononetin and medicarpin, and aglycones biochanin, daidzein, and irisolidone. Hg tolerance appeared to be mainly associated to the accumulation of formononetin MalGlc, tricin GlcAGlcA, and afrormosin Glc II in leaves, whereas aglycone accumulation was associated with tolerance to Hg stress in roots. The results evidence the alteration of the flavonoid metabolic profile and their glycosylation processes in response to Hg stress. However, notable differences existed between varieties, both in the basal metabolic profile and in the response to treatment with Hg. Overall, we observed an increase in flavonoid production in response to Hg stress, and Hg tolerance appeared to be associated to a characteristic glycosylation pattern in roots, associated with the accumulation of aglycones and monoglycosylated flavonoids. The findings are discussed in the context of the flavonoid biosynthetic pathway to provide a better understanding of the role of these secondary metabolites in the response and tolerance to Hg stress in M. truncatula.

13.
J Agric Food Chem ; 70(23): 7321-7341, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35652359

ABSTRACT

Soy is the major oilseed crop as soybeans are widely used to produce biofuel, food, and feed. Other parts of the plant are left on the ground after harvest. The accumulation of such by-products on the soil can cause environmental problems. This work presents for the first time a comprehensive metabolite profiling of soy by-products collected directly from the ground just after mechanical harvesting. A two-liquid-phase extraction using n-heptane and EtOH-H2O 7:3 (v/v) provided extracts with complete characterization by gas chromatography and ultra-high-performance liquid chromatography both coupled to time-of-flight mass spectrometry. A total of 146 metabolites, including flavones, flavonols, isoflavonoids, fatty acids, steroids, mono-, sesqui-, di-, and triterpenoids, were tentatively identified in soy by-products and soybeans. These proved to be sources of a wide range of bioactive metabolites, thus suggesting that they could be valorized while reducing potential environmental damage in line with a circular economy model.


Subject(s)
Fabaceae , Glycine max , Chromatography, High Pressure Liquid/methods , Gas Chromatography-Mass Spectrometry/methods , Liquid-Liquid Extraction/methods , Mass Spectrometry/methods
14.
Food Chem X ; 13: 100242, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35498984

ABSTRACT

Pressurized liquid extraction (PLE) conditions were optimized to improve the recovery of orange (Citrus sinensis) by-products terpenoids. The neuroprotective potential of the PLE extracts were tested against a set of in-vitro assay (antioxidant (ABTS), reactive oxygen/nitrogen species (ROS/RNS)) as well as enzymatic tests (acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and lipoxygenase (LOX)). Gas chromatography coupled to high-resolution mass spectrometry (GC-q-TOF-MS) analysis revealed a higher enrichment in mono- and sesquiterpenoids of the PLE extracts with the highest neuroprotection capacity. In-silico molecular docking analysis showed the specific interaction of representative terpenoids with enzymes active sites. The results demonstrate that the selected extract at 100 °C and 30 minutes possesses high antioxidant (ABTSIC50 = 13.5 µg mL-1; ROSIC50 = 4.4 µg mL-1), anti-cholinesterase (AChEIC50 = 137.1 vg  L-1; BChEIC50 = 147.0 µg mL-1) and anti-inflammatory properties (against IL-6 and LOXIC50 = 76.1 µg mL-1), with low cytotoxicity and protection against L-glutamic acid in cell models.

15.
Int J Mol Sci ; 24(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36613976

ABSTRACT

Agrifood by-products and microalgae represent a low-cost and valuable source of bioactive compounds with neuroprotective properties. However, the neuroprotective effectiveness of therapeutic molecules can be limited by their capacity to cross the blood-brain barrier (BBB) and reach the brain. In this research, various green extracts from Robinia pseudoacacia (ASFE), Cyphomandra betacea (T33), Coffea arabica (PPC1), Olea europaea L., (OL-SS), Citrus sinensis (PLE100) by-products and from the microalgae Dunaliella salina (DS) that have demonstrated in vitro neuroprotective potential were submitted to an in vitro BBB permeability and transport assay based on an immortalized human brain microvascular endothelial cells (HBMEC) model. Toxicity and BBB integrity tests were performed, and the transport of target bioactive molecules across the BBB were evaluated after 2 and 4 h of incubation using gas and liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (GC/LC-Q-TOF-MS). The HBMEC-BBB transport assay revealed a high permeability of representative neuroprotective compounds, such as mono- and sesquiterpenoids, phytosterols and some phenolic compounds. The obtained results from the proposed in vitro BBB cellular model provide further evidence of the neuroprotective potential of the target natural extracts, which represent a promising source of functional ingredients to be transferred into food supplements, food additives, or nutraceuticals with scientifically supported neuroprotective claims.


Subject(s)
Blood-Brain Barrier , Microalgae , Humans , Endothelial Cells , Brain/blood supply , Gas Chromatography-Mass Spectrometry/methods
16.
Electrophoresis ; 43(1-2): 37-56, 2022 01.
Article in English | MEDLINE | ID: mdl-34473359

ABSTRACT

This work presents a revision of the main applications of capillary electromigration methods in food analysis and Foodomics. Articles that were published during the period February 2019-February 2021 are included. The work shows the multiple CE methods that have been developed and applied to analyze different types of molecules in foods. Namely, CE methods have been applied to analyze amino acids, biogenic amines, carbohydrates, chiral compounds, contaminants, DNAs, food additives, heterocyclic amines, lipids, secondary metabolites, peptides, pesticides, phenols, pigments, polyphenols, proteins, residues, toxins, vitamins, small organic and inorganic compounds, as well as other minor compounds. The last results on the use of CE for monitoring food interactions and food processing, including recent microchips developments and new applications of CE in Foodomics, are discussed too. The new procedures of CE to investigate food quality and safety, nutritional value, storage and bioactivity are also included in the present review work.


Subject(s)
Electrophoresis, Capillary , Food Analysis , Food Additives/analysis , Food Quality
18.
Food Chem X ; 12: 100140, 2021 Dec 30.
Article in English | MEDLINE | ID: mdl-34746747

ABSTRACT

Pacová (Renealmia petasites Gagnep.) is a Brazilian native plant, usually cultivated in south regions of the country. Pacová was previously reported concerning their possible health benefits, mostly from folk medicine. However, only few works relates the health benefits with the composition of the fruit parts. In this context, this work aimed to bring, for the first time in literature, the chemical characterization in respect to lipid and terpene composition of R. petasites oilseed, performed by three different extraction methods (supercritical fluid extraction (SFE) with CO2, Soxhlet with petroleum ether (SOX), and maceration with hexane (MAC)). SFE was most selective for MUFAs, PUFAs, sesqui- and diterpenes. The main terpene identified in all extracts was 2-carene. The extracts presented poor AChE inhibition, and SOX presented potential inhibitory effect against lipoxygenase activity. Overall, R. petasites oilseed is a natural source of terpenes and their potential health benefits are highly encouraged to be investigated.

19.
Foods ; 10(6)2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34198926

ABSTRACT

This work reports the use of GC-QTOF-MS to obtain a deep characterization of terpenoid compounds recovered from olive leaves, which is one of the largest by-products generated by the olive oil industry. This work includes an innovative supercritical CO2 fractionation process based on the online coupling of supercritical fluid extraction (SFE) and dynamic adsorption/desorption for the selective enrichment of terpenoids in the different olive leaves extracts. The selectivity of different commercial adsorbents such as silica gel, zeolite, and aluminum oxide was evaluated toward the different terpene families present in olive leaves. Operating at 30 MPa and 60 °C, an adsorbent-assisted fractionation was carried out every 20 min for a total time of 120 min. For the first time, GC-QTOF-MS allowed the identification of 40 terpenoids in olive leaves. The GC-QTOF-MS results indicate that silica gel is a suitable adsorbent to partially retain polyunsaturated C10 and C15 terpenes. In addition, aluminum oxide increases C20 recoveries, whereas crystalline zeolites favor C30 terpenes recoveries. The different healthy properties that have been described for terpenoids makes the current SFE-GC-QTOF-MS process especially interesting and suitable for their revalorization.

20.
Plant Foods Hum Nutr ; 76(3): 319-325, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34264453

ABSTRACT

Rosemary (Rosmarinus officinalis) is a culinary and medicinal plant used in food and pharmaceutical industry. The wide range of biological activities is mainly related to phenolic and terpenic compounds; like carnosic acid (CA), carnosol (CS) and rosmarinic acid (RA), mainly reported in rosemary leaf extracts, and recently described in rosemary callus extracts. The aim of this work was to investigate the chemical profile of rosemary cell lines and evaluate their antiproliferative potential against human HT-29 colorectal cancer cell lines. For this purpose, rosemary leaf explants were dedifferentiated on MS medium and added with 2, 4-D (2, 4-dichlorophenoxyacetic acid; 2 mg/L) and BAP (6-benzylaminopurine; 2 mg/L). Cell aggregates were separated according to colour and three rosemary cell lines cultures were established: green (RoG), yellow (RoY) and white (RoW). The chemical profile of rosemary cell lines extracts was characterized by combining HPLC and GC platforms coupled to HR-MS/MS. The antiproliferative activity against HT-29 cell line was analyzed with MTT assay. A total of 71 compounds, including hydroxycinnamic acid and hydroxybenzoic acid derivatives, flavonoids, phenolic di- and triterpenes, as well as relevant unsaturated fatty acids and their esters, phytosterols, and carotenoids were tentatively identified in the extract of the target cell lines. The antiproliferative activity test against HT-29 cell using the MTT assay revealed that the viability of HT-29 colon cancer cells was affected after treatment with the RoW extract (IC50 of 49.63 µg/mL) at 48 h. These results showed that rosemary cell lines can also accumulate other bioactive phytochemicals with demonstrated antiproliferative potential.


Subject(s)
Colonic Neoplasms , Rosmarinus , Chromatography, High Pressure Liquid , Colonic Neoplasms/drug therapy , HT29 Cells , Humans , Plant Extracts/pharmacology , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...