Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Polymers (Basel) ; 15(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36987206

ABSTRACT

Poly(lactic acid) (PLA) is a common biobased film-former made from renewable biomass, such as polysaccharides from sugarcane, corn, or cassava. It has good physical properties but is relatively expensive when compared to the plastics used for food packaging. In this work, bilayer films were designed, incorporating a PLA layer and a layer of washed cottonseed meal (CSM), an inexpensive agro-based raw material from cotton manufacturing, where the main component is cottonseed protein. These bilayer films were made through the solvent casting method. The combined thickness of the PLA/CSM bilayer film was between 47 and 83 µm. The thickness of the PLA layer in this film was 10%, 30%, or 50% of the total bilayer film's thickness. Mechanical properties of the films, opacity, water vapor permeation, and thermal properties were evaluated. Since PLA and CSM are both agro-based, sustainable, and biodegradable, the bilayer film may be used as an eco-friendlier food packaging material, which helps reduce the environmental problems of plastic waste and microplastics. Moreover, the utilization of cottonseed meal may add value to this cotton byproduct and provide a potential economic benefit to cotton farmers.

2.
Polymers (Basel) ; 13(2)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33477583

ABSTRACT

Xylan is a major type of hemicellulose that has attracted a lot of research and development activities. It is often derivatized in order to improve its properties. In the literature, hydrophobic modification of polymers is often used to produce surfactant-like materials and associative thickeners. In this work, we have derivatized xylan with alkyl ketene dimer (AKD) and two types of alkenyl succinic anhydrides (ASAs). The xylan-AKD derivatives have been made at 90 °C, using dimethyl sulfoxide as solvent and 4-dimethylaminopyridine as promoter. Samples with degrees of substitution (DS) up to 0.006 have been produced. The xylan-ASA derivatives have been synthesized at 120 °C in dimethyl sulfoxide with DS up to 0.105-0.135. The structures of these products have been confirmed with NMR and FT-IR. These xylan derivatives increase the structural diversity of xylan and provide additional options for people seeking to use hydrophobically modified polysaccharides in their applications.

3.
Polymers (Basel) ; 12(3)2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32120783

ABSTRACT

Cashew gum (CG) shows promise of being useful as an agro-based raw material for the production of eco-friendly and biodegradable polymers. In this work, we modified this water-soluble polymer with alkenyl succinic anhydride in order to attach a hydrophobic group to it. The modification used two reagents: octenyl succinic anhydride and tetrapropenyl succinic anhydride. Reactions were conducted at 120 °C using dimethyl sulfoxide as a solvent, with conversions better than 88%. Samples with degrees of substitution (DS) between 0.02 and 0.20 were made. The resulting polymers were characterized using 1H NMR, 13C NMR, FTIR, TGA, and GPC. The addition of the hydrophobe decreased the affinity of cashew gum for water absorption. Hydrophobically modified polysaccharides are often used as polymeric emulsifiers, thickeners, and compatibilizers; we anticipate that these new hydrophobically modified CGs may be used for the same applications.

4.
Appl Microbiol Biotechnol ; 100(12): 5301-12, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27138197

ABSTRACT

Pathogen detection is a critical point for the identification and the prevention of problems related to food safety. Failures at detecting contaminations in food may cause outbreaks with drastic consequences to public health. In spite of the real need for obtaining analytical results in the shortest time possible, conventional methods may take several days to produce a diagnosis. Salmonella spp. is the major cause of foodborne diseases worldwide and its absence is a requirement of the health authorities. Biosensors are bioelectronic devices, comprising bioreceptor molecules and transducer elements, able to detect analytes (chemical and/or biological species) rapidly and quantitatively. Electrochemical immunosensors use antibody molecules as bioreceptors and an electrochemical transducer. These devices have been widely used for pathogen detection at low cost. There are four main techniques for electrochemical immunosensors: amperometric, impedimetric, conductometric, and potentiometric. Almost all types of immunosensors are applicable to Salmonella detection. This article reviews the developments and the applications of electrochemical immunosensors for Salmonella detection, particularly the advantages of each specific technique. Immunosensors serve as exciting alternatives to conventional methods, allowing "real-time" and multiple analyses that are essential characteristics for pathogen detection and much desired in health and safety control in the food industry.


Subject(s)
Biosensing Techniques/methods , Electrochemical Techniques , Food Microbiology , Salmonella/isolation & purification , Antibodies , Biosensing Techniques/economics , Biosensing Techniques/instrumentation , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Food Contamination/prevention & control , Food Microbiology/instrumentation , Food Microbiology/methods , Food Safety/methods , Foodborne Diseases/microbiology , Salmonella/pathogenicity
5.
Electron. j. biotechnol ; 10(1): 160-165, Jan. 2007. ilus, graf
Article in English | LILACS | ID: lil-460044

ABSTRACT

The lysozyme enzyme was immobilized on vitreous surface (fragments with diameters of 0.3 and 1.0 mm) for remediation of the microorganism Escherichia coli JM 109 into fresh water and saline solutions with 0.9 percent NaCl (w/v). Characterization of enzymatic film was carried out by infrared spectroscopy and atomic force microscopy techniques. Bactericide activity of the enzyme was evaluated by spectrophotometric analysis. It was verified that the enzymatic film was strongly coupled with the vitreous surface. The topographic analysis demonstrated that the deposited film was uniform and homogeneous. It was observed bactericide activity of film deposited on vitreous surface with 0.3 mm in fresh and saline solutions. This fact was not verified to vitreous fragments with 1.0 mm of diameter.

SELECTION OF CITATIONS
SEARCH DETAIL
...